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Fellow Mathematicians,

Welcome (back) to a year of mathematical excite-
ment. It has been over a year now since the latest
version of the Invariant has been published. As far
as I can tell, the magazine was first published at the
very least in 1966, and very likely much earlier than
that. Over the years the magazine has displayed
the gigantic variety of ideas in Mathematics and its
applications and a is great place to have a glimpse of
the many realms of Maths that one hasn’t explored.
It has also been a voice for the members of the
Invariants to share intriguing pieces of Mathematics
that they have encountered, and I invite you to do
the same.

In this edition of the Invariant you will find an
appreciation for seeking multiple proofs of the same
result and the various reasons people have done so
in exploring mathematical structures. Phil Tootill, a
former editor of this magazine, gives an interesting
view of board game design and how it compares to
mathematical rigor; after all, some formalists claim
that Mathematics is nothing but a game where we
follow a set of axioms. As a step away from the
classical set-theoretic formalism, our colleague from
UCL, introduces us to the world of Category Theory.
Finally, you might enjoy reading about Rational
Tangles and how interesting Mathematics arises even
when we’re just thinking about how a pair of strings
can tangle up.

Wishing you reward in your mathematical ex-
plorations, and a successful term,

Hazem Hassan

Editor-in-chief
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Reinventing the Wheel

Vicky Neale

What is a proof for?

Of course proofs are to tell us that theorems are true. But they’re about much more
than that too, which explains why it is worth having more than one proof of a theorem.
If a proof is only to demonstrate truth, then giving a second proof of a theorem is like
being the second person to invent the wheel. The multitude of proofs of some theorems
in mathematics reveals much about those results, but also about what proofs can do for
us as mathematicians.

In this article, I'd like to reflect on a few other purposes of proofs, and to give some
examples. These examples are inevitably biased towards the areas of mathematics that
I have thought about most, they are not supposed to be a representative selection! My
suggestions of purposes of proofs are not a complete list. Rather, I hope that the article
will encourage you to think about the purposes of proofs for yourself, and to select your
own favourite examples.

If you look online, it is not too hard to find collections of multiple proofs of the same
result: of Pythagoras’s Theorem, or the irrationality of 2, for example. Such collections
are fascinating, and often contain little gems of proofs, with beautiful and unexpected
ideas. However, there are probably good reasons why only a handful of these proofs are
well known. Here, I want to focus on a slightly different type of situation, where the
second proof of a theorem is at least as well known as the first.

Generalising

Sometimes a merit of a proof is its applicability to other problems. Perhaps it opens up
new avenues of generalisation. Perhaps it shows that more is true.

For example, one of the most famous proofs in mathematics is surely Euclid’s proof
that there are infinitely many primes. (You probably know the one: suppose there are
finitely many primes, multiply them all together and 1 to obtain a number that is not
divisible by any of the primes on the initial list, contradiction.) I think it is rightly
famous: its elegant economy suffices to prove something important about the primes.

Perhaps less well known is the argument attributed to Euler that proceeds by con-
sidering the sum of the reciprocals of the primes. It turns out that this sum diverges (I
shan’t go into details here), and this demonstrates that in particular there are infinitely
many primes.

If your goal is just to prove that there are infinitely many primes, then Euclid’s
argument is enough, and as a bonus it is beautiful. Euler’s approach needs more work,
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but reveals more about the distribution of the primes, and also extends nicely. It’s
possible to generalise Euclid’s argument to show that there are infinitely many primes
of certain forms. For example, a classic problem for undergraduates is to prove that
there are infinitely many primes that are one less than a multiple of 4, and a suitable
adaptation of Euclid’s argument will do this very nicely. But it turns out to be rather
hard to extend the argument to the whole family of such problems (even using it to
prove that there are infinitely many primes that are one more than a multiple of 4 takes
more thought).

As we would hope, a more general result is true, and this is known as Dirichlet’s
theorem: if a and d are coprime (have highest common factor 1), then there are infinitely
many primes that are a more than a multiple of d. It turns out to be possible to prove
that in this case the sum of the reciprocals of the primes that are a more than a multiple
of d diverges, and this proves that there are infinitely many such primes.

Additional insights

In 1909, David Hilbert solved Waring’s problem. Hilbert showed that for each k, there
is some s such that every positive integer is a sum of s k™ powers. This is a big
generalisation of a famous theorem of Lagrange, which states that every positive integer
is a sum of four squares. Edward Waring conjectured the generalisation in the eighteenth
century, and Hilbert was able to prove the result.

In the 1920s, G.H. Hardy and J.E. Littlewood gave another proof of Waring’s con-
jecture. This proof has gone on to be more significant and more well known—but why,
when the theorem had already been proved?

Hardy and Littlewood took a very different approach from that of Hilbert. Their
argument gives more information: it gives an asymptotic formula for the number of ways
to write a large integer N as a sum of s k" powers (where s is large enough in terms
of k). This formula is an estimate for the number of representations, but it becomes a
better estimate for larger values of N. By showing that the number of representations
is positive for suitable s and for large enough N, Hardy and Littlewood proved the
conjecture of Waring, but their argument gives a more detailed insight. In addition, the
Hardy—Littlewood approach gives a framework for solutions to a range of other similar
problems in additive number theory.

One striking example is due to Ivan Vinogradov, who streamlined and adapted the
approach of Hardy and Littlewood to prove that every sufficiently large odd number is
a sum of three odd primes. The Hardy-Littewood circle method has since been used to
resolve a range of problems with this general flavour, and there are books entirely about
the circle method.

A Rosetta stone

Terence Tao has described the various proofs of Szemerédi’s Theorem as a Rosetta stone
for mathematics.
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The theorem, which Endre Szemerédi proved in 1975, states that for any k > 1
and any ¢ > 0, there is N such that if A is a subset of {1,2,..., N} of size at least
0N, then A contains an arithmetic progression of length k. (For example, if N is large
enough and we choose 1% of the numbers from 1 to N, then our chosen set must contain
some structure in the form of an arithmetic progression of length 100.) This resolved a
conjecture of Erdés and Turan from the 1930s.

So what is so special about this theorem? Here is a quick summary of its history.

In 1953, Klaus Roth gave a proof of the special case of arithmetic progressions of
length 3, using a version of the Hardy-Littlewood circle method that today is usually
phrased in terms of Fourier analysis.

In 1969, Szemerédi proved the theorem for progressions of length 4, and in 1975
he was able to deal with the general case of progressions of arbitrary length. He used
ingenious combinatorial arguments, including the Regularity Lemma that he proved
along the way (and that has gone on to have a huge number of applications to other
problems).

In 1977, Hillel Furstenberg gave another proof of Szemerédi’s Theorem, unexpectedly
using ergodic theory.

As if these proofs were not enough, in 1998 and 2001 Timothy Gowers gave a new
proof (for progressions of length 4 in 1998 and for arbitrary lengths in 2001), extending
Roth’s Fourier analytic ideas and introducing several new ingredients.

Since then, there have been several additional proofs, refining previous arguments
but also introducing new ideas such as hypergraph regularity.

Each proof has its own intrinsic interest, of course, but what is so special, and
what prompted Tao to use the Rosetta stone analogy, is that exploring the connections
between the arguments has been a rich source of insights. It seems that the approaches
have a number of common features, and these give ways to connect seemingly disparate
areas of mathematics.

An anticlimax

Sometimes the second proof of a theorem comes as something of an anticlimax. One
of the highlights of nineteenth century mathematics was the proof in 1896 by Jacques
Hadamard and Charles de la Vallée Poussin of the Prime Number Theorem. (They came
up with their proofs independently but using essentially the same ideas at the same time.)
This theorem says that the number of primes up to any value z is asymptotically =/ log .
Perhaps surprisingly, their proof relied crucially on ideas from complex analysis: their
argument proceeded by showing that the Riemann zeta function never takes the value
zero for a certain set of complex values, and it turns out that this is sufficient to prove
the theorem. Mathematicians wondered whether there was an ‘elementary’ proof, one
that does not use complex analysis, since after all this is a result about counting prime
numbers and it is not clear that such a result should rely on complex analysis.

In 1948, Erdés and Selberg gave an elementary proof of the Prime Number Theorem,
and thereby resolved the question. It was not, however, quite the triumph it might have
been, because their arguments are rather sophisticated and subtle. While the argument
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is technically ‘elementary’, it is definitely not easy. The elementary argument has its
fans, and has led to other new ideas, but undergraduates meeting the Prime Number
Theorem still usually learn about a proof using complex analysis before they meet the
elementary method—the second proof has not, as one might have expected, rendered
the first one obsolete.

Conclusion

I hope that these examples will prompt you to reflect on your own experiences of knowing
multiple proofs of the same theorem, and in particular I encourage you not to settle for
knowing just one proof if knowing another would deepen your understanding. This is as
true of undergraduate mathematics as it is of cutting-edge research. Sometimes being
the second person to invent the wheel can be a good thing!

References

G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, sixth edition,
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From Maths to Meeples

Phil Tootill

Leaving mathematics behind was difficult. At university, it was the core of my
identity. My friends were mathematicians, my shelves were piled with maths books, and
my coffee was drunk from mathematical mugs. Four years on, I'm happy to say it still
has a huge impact on how I think: in my work, as a software developer, but also in my
hobby as a board game designer.

To many people, board games are a symbol of humdrum afternoons on a disappoint-
ing holiday, but that perception is changing rapidly. I started playing board games in
my final year of university, and suddenly found myself lacking time for anything else.
Soon after, I attended the UK Games Expo in Birmingham, and was inspired to try
designing my own games. Three years in, I have a range of promising prototypes, and
one game due to be published later this year.

In this article, I'll be discussing some of the ways studying maths influenced my
approach to game design.

1. The Need For Rigour

In both fields, there’s a huge focus on seemingly trivial details. This was a huge cause
of frustration in my first year of studying. I'd covered all the interesting cases- why
would it matter if n was 07 I eventually came to appreciate the details, and this has
been incredibly valuable when designing board games. It’s easy to overlook special cases,
such as a player needing to play a card when they have no cards left. Eventually these
cases will all happen: in fact, players often deliberately seek out these cases and try to
exploit them. While they’re not the most exciting part of designing a game, they're a
crucial one, and my mathematical training made them a lot easier to identify.

2. Choosing Axioms

In many ways, the rules of a game are like the axioms of a mathematical theory. An
ideal set of rules needs to be consistent and cover everything your game should do, while
being as simple as possible. If a rule is too complex, one solution is to replace it with
an equivalent but more intuitive one. The ideal solution, however, is to remove the rule
entirely.

There are some good examples of mathematicians trying to streamline a set of axioms.
One example is the axiom of choice from set theory. Roughly speaking, this axiom is as
follows:
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Given any collection of sets, a set exists which takes one element from each
set in the collection.

At first glance, the axiom seems harmless. At worst, it seems redundant, and should
follow from the other axioms. However, it has some hugely unintuitive consequences,
such as the Banach-Tarski paradox.

Another example can be found in Euclidean geometry. Euclid put forward five ax-
ioms, from which all geometry should follow. The first four are totally intuitive, corre-
sponding naturally to using a ruler and a compass to do geometry on paper. The fifth
axiom, however, caused centuries of controversy. There are various formulations of this
axiom, the most illustrative being the triangle postulate:

The angles in a triangle must add up to 180 degrees.

Why is this axiom needed? Including this statement as a basic rule of geometry is
incredibly dissatisfying. Mathematicians searched for a way to derive this axiom from
the other four for two thousand years. The conclusion was that the axiom is indeed
necessary- but only in Euclid’s geometry. The are other alternate geometries, where the
axiom may not be true. To illustrate this, consider a triangle drawn on the surface of
the earth. The base runs along the equator, and reaches a quarter of the way around.
The apex lies at the north pole. The sides make a right angle at each vertex, showing
the triangle postulate is false on the surface of a sphere.

Several times, I've seen an analogous situation in game design. I was working on a
game for a year, and had a core rule which just wouldn’t work. The rule had been there
from the start, and seemed important, but consistently received negative feedback. I
spent weeks looking for ways to fix this rule. Out of curiosity, I tried removing the rule
entirely, and it fixed the whole problem. Like the new geometries which were discovered
by removing the triangle postulate, games can take surprising and interesting directions
when designers are brave enough to relax rules which seem unquestionable.

3. Structuring An Argument

When analysing a game, it’s often useful to break it down into three stages, known as
the MDA framework:

e Mechanics: The core rules of the game.
e Dynamics: How the rules interact.
e Aesthetics: The emotional responses to the game.

To illustrate, consider the game of poker. The core mechanics provide a series of moments
where each player can choose to bet or to fold, and the ways hands are scored. Bluffing
is an example of a dynamic. The rules never explicitly state that players should act as
if their hand is better than it is, but its a natural consequence of the betting mechanics.
The tension, which makes the game fun, is the aesthetic that is creating by the bluffing
dynamic.
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This structure is reflected in mathematics by the relationship between axioms, lem-
mas and theorems. Starting with axioms, the aim is to create theorems, and lemmas
are used as a stepping stone in the process. A good lemma can be used in many situa-
tions. Similarly, a good dynamic, such as bluffing, can re-used in multiple games, just
by implementing a small number of mechanics.

It’s also useful to consider these two structures when considering how to explain a
game. With the right collection of lemmas, a theorem should follow with little difficulty.
Likewise, a game explanation becomes awkward if too much emphasis is placed on why
the game will be fun. A large part of the challenge of game design isn’t just trying to
make rules that work- it’s in making a set of rules which are exciting and interesting to
players, even during the explanation.
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Category Theory

Lukas Kofler

What do the lowest common multiple of two natural numbers, the V in logic and the
disjoint union | | of two sets have in common?
At first glance, nothing. At second glance — still nothing, except maybe that all three
take two variables and output another one of the same kind. It turns out though that
they are examples of the very same concept — the so-called coproduct. This surprising
result showcases the power of category theory. To quote Tom Leinster!:

Category theory takes a birds eye view of mathematics. From high in the
sky, details become invisible, but we can spot patterns that were impossible to
detect from ground level.

Category theory was invented by Saunders Mac Lane and Samuel Eilenberg in their 1945
paper “General theory of natural equivalences”. They were motivated by their research
in algebraic topology. The theory soon found application in homological algebra and
algebraic geometry. Today category theory is an active area of research in its own right
and is also being applied in theoretical physics, computer science and even linguistics.
But first things first. The starting point of category theory is the general observation
that in many areas of mathematics we essentially work with just two different types of
things which form a category when considered together: some (static) objects and some
means of getting from one object to another.

There are plenty of examples: to “move” from one set A to another one B, we can use
a function f: A — B. Groups in abstract algebra are linked by group homomorphisms,
which are special functions that “preserve” the group structure. The same holds true
for rings and ring homomorphisms, vector spaces and linear functions between them. If
we work with topological spaces the functions we want to use are just continuous ones?.
These are different instances of structures with “nice” structure-preserving functions be-
tween them! This is an important notion and we shall try to capture it.

Consequently, we will look at objects and function-y maps between them which we
will call arrows (or maps, or morphisms as we please). Which properties do we want
these arrows to have?

1A category theorist at the University of Edinburgh.
2If you haven’t studied some of these concepts yet, don’t worry. In fact, the only things we need to
know about are sets and functions. You can ignore the other ones, they are just for extra illustration.
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If we have a map f between two objects A and B and another one called g going from
B to C, we would like to be able to chain them together to get a new map from A to
C. Let’s call it g o f, just like we would with functions. As a diagram:

A—1L.pB
gof lg
C

It doesn’t matter whether we go from A to C directly or whether we take a detour

through B — we get the same result. Whenever this is the case, we say that the diagram
commutes.
Let’s assume we have three arrows: f from A to B, g from B to C and h from C to D.
When forming the composite arrow hogo f from A to D it shouldn’t matter whether we
compose f and g first and apply h later or whether we compose g and h first and apply it
to f afterwards: we want ho(go f) = (hog)o f — like standard function composition. We
also note that every set S has an identity function 1g : S — S which maps every element
of the set to itself. We shall require every object to have such a do-nothing-arrow, too.
We arrive at the following:

Categories

Definition 1. A category C consists of objects (typically denoted A, B, C, ...) and arrows
(typically denoted f, g, h,...). These objects and arrows obey some rules:

e Every arrow f has a domain dom(f) and a codomain cod(f). We write f : A - B
whenever we want to say that A = dom(f) and B = cod(f).

e For two arrows f : A — B, g: B — C (i.e. cod(f) = dom(g)) there exists an
arrow go f : A — C called the composite of f with g.

e For every object A, there is an arrow 14 : A — A which we call the identity arrow
of A.

Lastly, there are two more rules governing the behaviour of the arrows:

e Associativity of composition. For any three arrows f: A — B,
g:B—Candh:C— D wehave ho(go f)=(hog)o f.

e [dentity arrows act as a unit for composition. For any arrow f : A — B we have
fola=f=1lgof.

Anything that fits the above definition is a category. We immediately see that if we
take all the sets as objects and all the functions as arrows, we can form the category

10
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Set. Along the same lines we can speak of Grp, the category of groups and group ho-
momorphisms and of Top, the category of topological spaces and continuous functions
between them.

Can we make a category out of the set of integers Z? Let the objects be the integers. Let
there be an arrow between two integers m and n if and only if m < n. Since n < n for
every n, we have the required identity arrows. And because n < m and m < p implies
that n < p, composition works too, so we see (after quickly checking the rest of the rules
for arrows) that Z together with the operation <, denoted (Z, <), does indeed form a
category!

Now for an example from logic: let’s consider as objects logical statements ¥, ¢, ... and
arrows from some ¢ to some v iff® we can deduce 9 from ¢, usually denoted ¢ 2. For
those familiar with formal theories, it should be easy to check that this, too, is a category.

A simple way of getting a new category, let’s call it C°, from an old one C is to
simply reverse all the arrows. To elaborate: the objects of C are the same as those of
C, while any arrow swaps its domain and codomain: f: A — B becomes f? : B — A.
Consequently, identity arrows don’t change. Composition of arrows is defined in a nat-
ural way: fo% g = go f where o°? denotes the composition operation in C°. This new
category is called the opposite or dual of C.

What is the dual of (Z, <)? Reversing every arrow, we must get (Z, >)! This formalizes
the intuition that > and < are some kind of opposites of each other in a neat way.
Sadly, the dual of Set isn’t quite as nice — when we reverse the direction of a function,
we generally don’t get another function. So the arrows of Set® are just some relations
which would be functions read “the other way around”. This doesn’t make for a very
exciting category but it still exists.

All the categories we’ve considered so far have had infinitely many objects and arrows.
But there are very simple ones too. For example, the category 1 which consists of a
single object, let’s call it e, and one single identity arrow from e to itself. The category
2 looks like this (identity arrows not drawn):

 — 0O

We can call the objects and arrows whatever we want — the category stays the same
for all intents and purposes. This brings up an important feature of category theory:
the only things we are interested in from this new point of view are how objects relate to
each other through arrows, i.e. how many, if any, arrows go from one object to another
and how they might compose. Whatever’s going on within objects is not of our concern.
We can call this approach structural, or external.

3this is shorthand for if and only if.

11
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Isomorphisms

Which familiar concepts can we rephrase in such a way? Let’s look at bijective functions
and try to find a categorical analogue in Set.

Usually, part of the definition of a bijection is injectivity, i.e. that f(x) = f(y) = x = y.
Category theory is too coarse for statements like this — the smallest thing we can see
looking at the category of sets is a set. Since there is no categorical notion of an element
of a set, we can’t translate the former statement into category-speak.

We’ll have to try from another angle: a function f : A — B is bijective iff there’s an
inverse function f~!: B — A so that for every 2 € A we have f~!o f(x) = 2 and for all
yin B, fo f~!(y) = y. This is the right way to look at it!

Definition 2. An isomorphism, sometimes simply called an iso, is an arrow
f:A— B with an inverse g : B — A such that go f =14 and fog = 1p. We say that
A and B are isomorphic and write A = B.

This is our first real category theoretic definition of an important concept. We don’t
have to “look inside” the objects and arrows at hand; the definition is framed purely in
terms of arrows and how they relate to each other.

In Set, the isos turn out to be precisely the bijective functions*. Furthermore, we can see
that two sets are isomorphic iff they have the same number of objects. In Grp, we get
the group isomorphisms (hence the name) and in Vecty, the category of vector spaces
and linear transformations/matrices over some field K, we get the invertible matrices,
just as we would expect. In (Z, <) we only get isos whenever n < m and m < n at the
same time, so n = m <= n =m.

We can ask what’s the dual concept of an isomorphism, i.e. an isomorphism in a dual
category? Let’s try it out: if we reverse the arrows in the definition we get f? : B — A
and ¢°? : A — B with the requirements that g°? 0% fP =14 and f°P 0% ¢°P = 1. Save
for the distracting superscripts, the equations look just like before. This shows that the
dual of an iso is, again, an iso.

Isomorphisms appear almost everywhere in mathematics in different disguises, so it feels
natural that we are able to define them categorically, without having to consider con-
crete isomorphic objects.

Products

Another ubiquitous concept in maths is that of a product. We can form the product of
two natural numbers, the cartesian product of two sets, the tensor product of two vector
spaces, the direct product of two groups, and so on. Since the categorical notion of a

4You can work out the details yourself or look them up in any of the books referenced at the end.
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product needs to be “arrow-theoretic”, it is a bit more involved and doesn’t really look
like any of the products we know and love at first glance, but bear with me.

Definition 3. In a category C the product of objects X and Y is an object X x Y
together with two so-called projection arrows p1 : X XY — X and po : X XY — Y such
that for an arbitrary object S coming with arrows f1 : S — X and fy : § = Y there is
a unique arrow u : S — X x Y such that the following diagram commutes, which means
that fi =pjowu and fo =poou:

AN
X+—XxY —Y
p1 D2

Given an arbitrary object S with two arbitrary arrows into X and Y the product is
the only object (up to isomorphism®) so that you can always find an arrow u making
our arbitrary arrows “factorise”: f; = p; o u. So together with a product object we
implicitly get a (bijective) function taking two functions as arguments (f; and f3 in the
definition) and returning another function uw. This property is what makes the product
such a special object.

Let’s try some examples right away.

As always, looking at Set should clear things up a little. As mentioned above, we
will consider the cartesian product X x Y = {(z,y) |r € X and y € Y'}.

We want to show that, for example, a function N — R x Q given by n + (y/n,n?) is
essentially the same thing as two functions N — R and N — Q, namely n — /n and
n s n2.

We will use as projection arrows p; : X x Y — X with (z,y) » z and po: X XY =Y
with (x,y) — y. These functions forget about one of the components of (z,y). If we
consider a figure in the cartesian X-Y plane, i.e. a subset of X x Y, we can view the
image of these functions as the shadows of the figure when shining a light onto the z-,
respectively y-axis.

Now say we are given some set S and functions f; : § — X and fo: 5 — Y. We want
to find a function u from S to the product X x Y such that f; has the same effect on
any element of S as py o u (analogously for f2).

We can set u = (f1, f2). This function sends s € S to (fi(s), f2(s)) in X x Y. Applying
the projection arrow for X afterwards we get p1((fi(s), f2(s))) = fi(s). The same with
po and we are done.

This shows that u does indeed make the triangles in the above definition commute. Al-
though it might not be immediately apparent, the way we defined « makes it the unique
such function too. Since S, fi; and fy are arbitrarily chosen, this procedure will work for
any set equipped with two such functions. This proves that the cartesian product really

®So we could prove that if there exists another product X x’Y, then X x Y = X x'Y.

13



The Invariant, MT17

is the incarnation of the categorical product in Set.

Every pair of arrows into X and Y corresponds to exactly one arrow into X x Y. This is
an instance of a universal mapping property, UMP for short. Many concepts in category
theory can be characterised by different UMPs.

Since category theory doesn’t give us many tools for inspecting arrows, it’s no big sur-
prise that one of the most coveted properties an arrow can have is uniqueness.

Even though we didn’t mention it before, even isomorphisms have such a UMP — namely
that the inverse to a given iso is unique (prove it!).

A less obvious instance of a product can be found in the category consisting of the nat-
ural numbers with a single arrow from a number n to another one m iff n divides m.
The “product” of natural numbers m and k, let’s call it [, has to satisfy the following
conditions: it has to divide m and k (the projection arrows), and whenever a number
n divides both m and k, n needs to divide [ too (this condition equates to the unique
arrow making everything commute).

If m = 60 and k = 72, then any number that divides both A and B — 1, 2, 3, 4, 6 or
12 — has to divide I, so [ must be 12. This might look familiar now. Indeed, the unique
number for which this is true in general is the greatest common factor gcf (m, k)!

Let us look at the category of finite sets and functions between them for a second. This
category’s product works just like the one of Set. Consider just the number of elements
in the sets, i.e. their cardinalities, which we denote |A| for some finite set A. It is easy
to show that |A x B| = |A|-|B|. So if A has n elements and B has m, their product has
n - m elements. This shows that the categorical product generalises even the standard
multiplication of natural numbers we learned in primary school! Isn’t that neat?
Continuing with our familiar examples, the product in Grp is the direct product G x H
of groups G and H, similarly to the product in Set. The product of vector spaces in
Vect g is the tensor product V@ W.

Now there’s just one more thing to do: dualize.

Coproducts

Dualizing just means turning the arrows around. If we do that to the definition of a
product, we get its dual which is called a coproduct:

Definition 4. The coproduct of two objects X and Y in a category C is an object
denoted X + Ywith two njection arrows i1 : X - X +Y and

i2 : Y = X +Y such that for any object S and arrows g; : X — S and g2 : Y — S there
is always a unique arrow v : X +Y — § such that the following diagram commutes:

X — X+Y +——Y

11 12
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So analogously to before some object is a coproduct iff, given ¢g; and g2 as above, we
can find exactly one v such that g1 = v oi; and go = v o is.

The coproduct of two sets A and B in Set (which is the same thing as the product
in Set’”, by the way) is the disjoint union A U B. Unlike the ordinary union, it keeps
track of where its elements came from: if an element z is a member of both A and B,
it shows up as two different elements in A LI B: the one coming from A is called (z,1),
the one from B (z,2).

We get intuitive injection functions iy : X — XUY sending « to (z,1) and iy : Y — XUY
sending y to (y, 2). Suppose now we are given some functions g; : X — Sand gy : Y — S.
Then the function v : X UY — S sending (z,1) to g1(x) and (y,2) to g2(y) makes the
diagram commute.

Moreover, if v' makes the diagram commute too, then v'((z,1)) = v/ o iy(z) = g1(x) =
v((z,1)) for any z € X and likewise v'((y,2)) = v((y,2)). Thus, we must have v = v/,
so v is unique as required. This shows that X UY is indeed the coproduct in Set!

If we again consider only finite sets and the functions between them, the coproduct gen-
eralises addition just like the product generalises multiplication since |A|+|B| = |AU B].
Why isn’t the ordinary union A U B the coproduct though? Consider the union {1} U
{1} = {1}. Let S = {a, b} and let the functions into S be given by ¢; sending 1 to a and
g2 sending 1 to b. What could our special function v from the union {1} to S be? We
can send the union’s only element either to a or to b, but not to both! Consequently,
one of the triangles will not commute and the UMP of the coproduct is not satisfied.

Let’s look for some more coproducts in familiar categories. Consider again the cate-
gory of natural numbers with an arrow between two numbers n and m iff n divides m.
We found that the product in this category is the greatest common factor. Intuitively
we might suspect that the lowest common multiple is the dual concept — and we would
be right: two naturals n and m need to divide their coproduct by the existence of the
injection arrows. And if n and m both divide some other number k, their coproduct —
appealing to the UMP of the coproduct — needs to divide k too. Thus, n+m = lem(n, m)
where + stands for the coproduct operation.

For those familiar with these concepts: in Vect g the coproduct is the direct sum VW
of vector spaces together with the evident inclusion maps from V and W. In Grp it is
the free product G * H equipped with injective homomorphisms from G and H.

The abstract category consisting of logical statements as objects and proofs as arrows
(p- 3) has an interesting coproduct too. We must be able to deduce the coproduct ¢+ 1)
from ¢ as well as from ), this is granted by the injection arrows. And whenever we
are able to infer some other statement ¢ from both ¢ and 4 (the diagonal arrows in the
diagram of the coproduct), we can infer it from ¢+ 1) too by the existence of this unique
arrow making the triangles commute. We can check that ¢ V1 satisfies these conditions!
The co-coproduct, i.e. the product, in this category is ¢ A as you might want to verify.
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Conclusion

We have shown that the product of natural numbers, the greatest common factor, the
product of sets and the logical conjunction A are, deep down, the same concept. In
the natural environment of the objects they act on, they sit in the same spot. This
demonstrates how category theory sheds light on the similarities of very different ar-
eas in mathematics, or categories, on one hand. On the other hand, it can grant us
additional information about the structures within a category — duality makes rigorous
the apparent connection between A and V, between gef(n,m) and lem(n, m), between
addition and multiplication.

What might be next? We can generalise other concepts like the evaluation of a function
f(z) when = equals some element of the domain, the quotient of groups G/K or the
empty set @. A natural way to abstract even further would be to do to categories what
we did to sets — consider some or all of them together as a huge object, a 2-category,
whose arrows are called functors.

This train of thought uncovers many more beautiful results we will learn about in the
years to come.

Category theory might seem to make things difficult rather than easy right now. But the
more mathematics we study and the more complex the objects we work with become,
the more we will appreciate its unifying aspects and powerful generalisations.

I hope most mathematicians continue to fear and despise category theory, so
I can continue to maintain a certain advantage over them.

- John Baez

Further reading

Category Theory: A Gentle Introduction - Peter Smith (2016)
Category Theory - Steve Awodey (2006)
The n-Category Caf - golem.ph.utexas.edu/category

nLab - ncatlab.org
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Rational Tangles

Rational Tangles

Hazem Hassan

Very recently John Conway presented to me a result of his which I found to be ex-
tremely surprising. I find it astonishing that this result is not very well known (at least
in my own experience). It is about a certain class of tangles, rational tangles, and in
particular it turns out that they have a very interesting and well behaved structure to
them.

1 Introduction

Note: a lot of the ideas in this article are best understood by playing with a pair of
strings and transforming them, so I would highly recommend removing the shoelace of a
pair of shoes to follow along with.

I’ll start with a very non-rigorous introduction to the result, and will later make the
proper definitions needed to prove it. We start by considering the following relatively
arbitrary looking construction. Label the following tangles 0 and oo, respectively.

~_

— T

(a) 0 tangle (b) oo tangle

While these may not look like tangles in the traditional sense, it is in the same
spirit that we say 0 is a number. We also define a couple of actions on these tangles,
namely Twist and Turn. Given a tangle labeled by some rational number ¢, a twist is
accomplished by twisting the two ends on the right side of the tangle as shown below,
the resulting tangle is then labeled ¢ + 1.

A turn is defined to be a rotation of the entire tangle, including the ends, by 90°
clockwise. For a tangle labeled ¢ the resulting tangle after turning is labeled —%.
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(c) t (d) t+1
Twist

(e) t (f) —1/t
Turn

It is natural then to combine these actions to create numerous different tangles, and
the astonishing result is that these labels turn out to be well defined, that is to say, if
two tangles are equivalent! (in the sense that we can deform one into the other while
keeping all four ends fixed, and without any cutting or gluing) then they will have the
same label.

\
< 2o ¢
Twist? Turn, 2\

(g) 1 (h) 3 (i) —1/3

As a challenge I would recommend using twist and turn only to transform the —%

tangle shown above into a 0 tangle, which would result in a messy looking tangle, however
since it has the same label as the 0 tangle defined above it must be the ”same” tangle,
and thus just pulling on all four ends, it will magically untangle itself into two separate
strings.

2 Rational Tangles

Our goal now is to prove the above result, namely, if two tangles have the same label
then they must be equivalent. We are only really interested in tangles that we can make
using only twists and turns, and these are the so called Rational Tangles; these are
the tangles that can be untangled through only twisting pairs of adjacent ends. In this

The technical term for the equivalence here is ambient isotropy
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section we will more formally define rational tangles and prove a very handy result on
them.

We start of by considering a much simpler class of tangles, the tangles constructed
by twisting the same pair of ends multiple times.

Definition. A tangle t is a horizontal integer tangle if it is the result of applying twist®
to the 0 tangle, and is denoted by t,. A tangle is said to be a vertical integer tangle if it
is the result of applying a turn to horizontal integer tangle, and is denoted by t.,.

Note that in the above definition « is also allowed to be a negative integer, which
simply corresponds to twisting in the other direction.

We can then see that gluing ¢, to to the ends of a tangle on the right or left , is
equivalent to twisting a times, and similarly with ¢, and the top or bottom ends, thus
since rational tangles can be untangled via a sequence of twists, we can repeatedly ”add”

integer tangles to construct rational tangles, which motivates the following definition of
addition.

Definition. For any tangles A and B we define their sums A+ B and A+’ B as in the
image below.
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A+B

A+'B

As one would expect t, +t, =ty and t;, +'ty =1, ;.

Definition. A tangle t is said to be a rational tangle if one of the following conditions

holds
1. t=t, ort=1t,
2. t=ty+B,t=B+t,, t=1t,4+" B ort= B+t where B is a rational tangle.

This definition aligns with our intuition of a rational tangle being a finite amount of
twists away from being two untangled strings.

Theorem (Flip Theorem). Let t be a rational tangle, then a rotation of t by 180° along
the horizontal or vertical axis is equivalent to t.

This theorem can be proved by an induction not too dissimilar to induction on natural
numbers due to the recursive nature of our definition of rational tangles. To start with,
it’s easy to see that t, and ¢/, remain the same after a rotation. We assume then that
t =ty + B where the B is a rational tangle which is preserved by such rotations, then a
rotation around the horizontal axis preserves both t, and B so it’s not too hard to see
that t, + B is preserved by rotating around the horizontal axis.

The trickier part is the rotation around the vertical axis, which reduces to proving
that B + t, is equivalent to t, + B. We see that by rotating B a times around the
horizontal axis while holding all the ends fixed that B is equivalent to t_, + B + t,, as
shown in the figure below
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(e D

t_o+t+1ts

Adding t, on the left of both tangles we see that t, + B is equivalent to B + t,.

3 Basic Tangles

The above result that B + t, is equivalent to t, + B allows us to re-write tangles in
multiples equivalent forms, for example

() + ((th+ t1) +13)) +t5 ~ (t) + ((t1 + 1) +t3) +t5 ~ (((t1 + th) +t3) +' ) + t5.

As we can see there are too many ways to write the same tangle as the sum of integer
tangles and thus we would like to be able to have a standard way to write rational
tangles.

Definition. A horizontal basic tangle is a rational tangle that is constructed as follows
1. begin with some t,

2. add some t; to the bottom, then some t. to the right and repeat for a finite number
of steps

A wertical basic tangle is a rational tangle that is constructed as follows
1. begin with some t,

2. add some ty, to the left, then some t.. to the bottom and repeat for a finite number
of steps

Example.
(((tr 4" th) +t3) +'ty) + t5

18 a horizontal basic tangle,
(t1+ ((ta +t5) +' t5)) +' th
s a vertical basic tangle.

It shouldn’t come as a big surprise that every rational tangle is equivalent to some
basic tangle, because they are constructed to be our standard way of writing rational
tangles, by using the flip theorem.
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4 Fractions

We have so far considered twists and the effect of adding them to rational tangles, we
now switch our attention to turns.

Definition. Let t be a rational tangle then we define —t to be the mirror image of t,
and —% to be the result of turning t.

Note that % is the result of a turn followed by taking the mirror image.
The following results are then not too hard to see by playing with a pair of strings
and applying the flip theorem.

Theorem. 1. b is a horizontal basic tangle if and only if 1/b is a vertical basic tangle
1
2. t; - E

3. if t is a rational tangle then

1
! 4/
b+t = —3

a t

Using the above result we can now write basic tangles as fractions

Example.

(((t1 +th) +t3) +' ) +t5 ~ t5 +
ty +
t3 +

(t1 + ((ta +t5) +'t5)) + th ~
to +

t +
ts +

ty + —
4 s
Fractions of this shape are called continued fractions which are a very well-studied
subject in Number Theory, and for our purposes, they include both aspects of twists
and turns from our original construction to represent basic tangles, and so it is natural
to use them to define a tangle’s label.

Definition. let t ~ t,, + be some basic tangle then, we define
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its label F(t) to be ap +

a1 +
as +
as +

1
a4+ -
By construction this definition of a tangle’s label matches with our earlier under-

standing of the label, thus we now have all the tools we need to prove the main result
with the aid of a couple ideas from continued fractions.

Theorem. Let t, s be basic tangles. If F(t) = F(s) then t is equivalent to s.

In order to note this we need to first use the fact that for every number there exists

1
a unique continued fraction ag + such that a; > 0 for ¢ > 1, and

a1 +

as +
2 . 1
3 a4 +

PRI
thus there is a unique basic tangle with a; > 0 for ¢ > 1, so our plan is to prove that
every basic tangle is equivalent to such a basic tangle. To do so we are going to need to
use the following formula,

in fact we are going to need the integer tangle version, that is if @ and b are rational
tangles then

1 1
CH—?(; = (a+t_1)+71,

t1 +

b+t

which isn’t too hard to verify.
We use the above formula to move the negative numbers higher in the continued
fractions.

1 1
Example. let t ~ t; + S ~ 1] — — Using the formula we get
tg+— ty+ ———
’ 1 ’ 1
t_g+ — tg + —
5 ls
that
ty+ — ~ 13+
- b+t
1 '
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thus
t~1 !
! 1
t3 +
t3 +
3 t1 + !
1 t
o 1
We can use the formula again with a =t; and b = t3 + — to get
ts +
t J—
1+ t
1
t ~Y
t1 + !
! 1
to +
ts +
t J—
1+ '

We have thus demonstrated that starting out with a rational tangle, we can use
the Flip Theorem to transform it to an equivalent basic tangle, which we can again
transform to a basic tangle that is unique for every label, and so if F'(s) = F(t) then
they are equivalent.
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Enjoyed the read?
Now it’s your turn!
Have you ever seen an interesting lemma that you want to share? Do you want to have
a go at writing an article about Mathematics?
Write for us! We’re waiting for your contribution.
Please contact
magazine@invariants.org.uk

The Invariants Society is Oxford University’s student society for Mathematics. We’re
here to promote Maths and we host weekly informal lectures often given by leading
mathematicians. To find out more, please see our website
http://www.invariants.org.uk/ or find us on Facebook at
https://www.facebook.com/oxford.invariants/.

Loved an article? Hated it? Do share! Send us your comments and we’ll get back to
you next term!
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