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Editor’s letter

Our society boasts an illustrious history. The Invariants was founded by Whitehead in 1936
and, since then, a long list of distinguished lecturers has adorned the society’s term cards, in-
cluding such names as Hardy, Mandelbrot, and Conway. The Invariant, the society’s magazine
and �agship, has been published for almost as long. It is with great honour, therefore, that I
present to you this new edition.
In this issue you will �nd plenty of fascinating mathematics. Aditya Ghosh gives a refor-

mulation, through functional analytic methods, of the Riemann Hypothesis as a simple (to
state!) problem in analysis. Jaymin Shah’s elegant exposition of a proof by Descartes provides
a way to estimate the number of positive real roots of a polynomial just by looking at the signs
of its coe�cients. Gavin Bala takes us on a tour of the wonderful geometric world of Coxeter
groups. These are just a few of the delightful pieces you will come across in these pages. I
hope you enjoy reading them.
Hopefully, this magazine will go some way towards ful�lling the society’s mission: to spread

ideas and provide inspiration to the community of Oxford mathematicians that has been so
active and creative for so long. An article might plant the seed of an idea that will later grow
into the solution of a problem. An essay might spark a conversation on an issue you hadn’t
considered before. Perhaps a poem will bring a smile to your lips.
We want you to take part in this project! There are a myriad of ways to get involved: attend

our talks and events and meet your fellow mathematicians (there is often food and games
provided), or tell us about speakers you’d like to see lecture (think big – last year we had Roger
Penrose!). Most importantly, we need your ideas – the continuation of this magazine depends
on you. It could be a slick solution to a tricky problem, a summer project you’ve worked on,
or an unusual proof of your favourite theorem. You could also write a more discursive piece,
perhaps a historical, philosophical, or biographical essay. You could even submit a poem or
illustrations for the magazine. Whatever your idea, and however un�nished, email it to us at
editor@invariants.org.uk and we’ll read it with great interest.
I urge you, then, to take inspiration from this issue and write! As the contributors of the

present edition will attest, working on an article and polishing it to perfection is one of the
most rewarding projects you can undertake. Our goal is to put a copy of the Invariant in the
pigeonhole of everyOxfordmathematician, and we need your passion and creativity to achieve
it. This is the magazine for Mathematics at Oxford. It ought to be a good one.
I am indebted to the Invariants committee, especially president Otillia Căs,uneanu, for their

invaluable advice, to Eva Xu for her beautiful illustrations, and tomy friend Tian-Long Lee for
his tireless help in reviewing the drafts. Above all, I must thank the writers and contributors,
without whose enthusiasm and originality the magazine couldn’t exist.
Invariably yours,
Diego Vurgait
Editor.
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Hilbert Space Approaches to the Riemann Hypothesis
Aditya Ghosh

Introduction

It is hard to understate the importance of the Riemann Hypothesis (RH). It remains
one of the greatest unsolved problems in modern mathematics. It is closely related
to the distribution of primes. Since its conception by Bernhard Riemann in 1859
there have been numerous attempts made over the centuries through vastly di�er-
ent approaches. In this article I shall highlight one such approach, which makes the
Riemann Hypothesis equivalent to a closure problem - essentially how well can you
approximate an element by other elements.
Let us start by recalling what the Zeta Function is. It was �rst introduced by Euler

in 1737, which is now de�ned for Re(s) > 1 by:

Z (s) :=
1’
n=1

1
ns

(1)

Youmight be wondering what this has to do with prime numbers. The Zeta Func-
tion can actually be shown to be equal to an in�nite product called the Euler Product:

Z (s) =
÷

p prime

✓
1 � 1

ps

◆�1
for Re(s) > 1 (2)

I encourage you to go ahead and prove this, without thinking too much about con-
vergence, just manipulating the symbols.
Euler was primarily interested in s 2 N. Riemann further showed that Z (s) can be

extended to s 2 C \ {1}. The location of zeroes of the Zeta Function is of, pardon the
pun, prime importance. There are a few trivial zeroes at s = �2, �4, �6, . . . , which
can be easily spotted. It can be shown that all the other zeroes, called the non-trivial
zeroes lie in the Critical strip 0 < Re(s) < 1. Also they are symmetric about the Critical
Line Re(s) = 1

2 .
We can now state the Riemann Hypothesis:

RiemannHypothesis All the non-trivial zeros of Z (s) lie on the critical
line {Re(s) = 1

2 }.
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A link between Z (s) and L2(0, 1)
RH has profound consequences on the distribution of primes and number theory in
general. So you might wonder how primes, which are very simple algebraic objects,
can be related to a closure problem, which is in the domain of analysis. It can be seen
from the following result:

Lemma. For every t � 1, Re(s) > 0, we have

1
t(s � 1) �

Z (s)
ts s

=
π 1

0
d

✓
1
tx

◆
xs�1 dx (3)

where d(x) is the fractional part of x 2 R.

You can go ahead and prove this yourself (Hint: Try substituting u = 1
tx and exploit

the fact that d(u) is a periodic function).
If we evaluate equation (3) at t = 1, we get:

1
(s � 1) �

Z (s)
s

=
π 1

0
d

✓
1
x

◆
xs�1 dx (4)

We can now obtain a simpli�ed version of equation (3) by subtracting 1
t ⇥ (4) from

it:
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Corollary. For every t � 1,<(s) > 0, we have

� Z (s)
s

(t�s � t�1) =
π 1

0
d

✓
1
tx

◆
� 1
t
d

✓
1
x

◆
|                 {z                 }

gt (x)

xs�1 dx (5)

where d(x) is the fractional part of x 2 R.

Closure Problem

The above equation (5) establishes a relationship between Z (s) and the elements gt
in L2 (0, 1), the square integrable functions on [0, 1].
Suppose RH is false and we have a non-trivial zero s0 of Z (s) such thatRe(s0) > 1

2 .
Plugging s = s0 into equation (5), we obtain:

0 =
π 1

0
gt (x) xs0�1 dx

As integration operation is linear, we can replace gt (x) in the above equation by
any element g (x) in their linear span a. Also, in L2 (0, 1), this integration operation
(integrating with xs0�1) is continuous. So if g (x) is a limit of functions in a , the above
equation still holds.

Question Is the constant function 1 a limit of functions in a

The answer, if we assume RH is false, is no.
Suppose it were true. Then we have:

0 =
π 1

0
1 xs0�1 dx =

1
s0

A contradiction! 1

Hence we have proved a very nice result:

Theorem. 1 is a limit point of a in L2 [0, 1] =) RH
1You might wonder if we can apply the same logic to s0 with real part 12 . After all, we do know there are

zeroes on this critical line. However, we can’t do that because our (xs0�1-weighted) integration operation
is not continuous for Re(s0) = 1

2 .
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In fact the converse statement is also true. However the proof of it requires quite
a lot of operator theory and is far too di�cult to include here. The closure problem
be stated as:

Theorem (Beurling, 1955). Given the functions gt 2 L2 (0, 1) , t � 1 de�ned as before,
let a := span{gt | t � 1} the following statements are equivalent:

1. RH

2. 1 2 closL2 (0,1) (a)

3. closL2 (0,1) (a) = L2 (0, 1), that is, a is dense in L2 (0, 1)

We can do even better. We can restrict our attention from uncountable set {t � 1}
to simply t 2 N. This was proven by Báez-Duarte as recently as 2003. So the
Riemann Hypothesis simply depends on whether one can approximate the constant
function 1 using g1, g2, g3, . . .

A �rst-year analysis problem

The functions g1, g2, g3, . . . are not too complicated. Here’s a little exercise: prove
that for k = 1, 2, 3 . . . , the function gk is constant on each interval ( 1

n+1 ,
1
n ) and the

value is d( nk ). So essentially these functions gk add and subtract just like the sequences
sk =

�
d( nk )

�
n2N. Let’s write down some of them:

s1 =
⇣
d

⇣ n
1

⌘⌘
= (0, 0, 0, 0, 0, 0, 0 . . . )

s2 =
⇣
d

⇣ n
2

⌘⌘
= (1

2
, 0,

1
2
, 0,

1
2
, 0, . . . )

s3 =
⇣
d

⇣ n
3

⌘⌘
= (1

3
,
2
3
, 0,

1
3
,
2
3
, 0, . . . )

Even the sequences sk themselves are periodic, repeating themselves every k terms.
So RH is equivalent to whether we can approximate the sequence (1, 1, 1, 1, 1, . . . ),
which corresponds to the constant function 1, using linear combinations of these sk
sequences.



8

Isn’t that remarkable, that something as di�cult as the Riemann Hypothesis has
such a simple reformulation? One can even write a formula or code to calculate how
close the constant sequence (1) is from the linear subspace spanned by {s1, s2, . . . sk}.
Call this distance dk. The Riemann Hypothesis follows if dk ! 0 as k ! 1! The
proof is left as a margin-worthy exercise to the reader.
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Descartes’ Rule of Signs
Jaymin Shah

How many positive real roots does the polynomial x2 + 1 have? How about 4x3 �
2x � 1? How about anxn + · · · + a1x + a0? Now before I get your hopes too high, I
won’t be deriving a formula that takes in a polynomial and spits out the number of
positive roots it has. Instead, I’ll be looking for a non-trivial1 upper bound to the
number of positive roots a polynomial can have. If we think about polynomials with
lots of positive real roots, we think of the signs of the coe�cients changing a lot (after
all, if most of the coe�cients were positive, say, the polynomial would be increasing
most of the time, and not have the ability to �uctuate much between positive and
negative values). This suggests that there should be a relationship between these two
quantities - and it turns out that there is one! And it’s simple to state and elegant to
prove!

De�nition. Let p(x) 2 R[x]⇤. Write p(x) = a0xb0 + a1xb1 + · · · + anxbn where b0 < b1 <

· · · < bn and ai < 0 8 i = 1, · · · , n. We de�ne s(p) to be the number of sign changes of the
coe�cients of p(x). That is, the number of i for which ai ai+1 < 0.

De�nition. Let p(x) 2 R[x]⇤. We de�ne z(p) to be the number of strictly positive real
zeroes of p counted with multiplicity.

Lemma. Let p(x) 2 R[x]⇤. Write p(x) = a0xb0 + a1xb1 + · · · + anxbn where b0 < b1 <

· · · < bn and ai < 0 8 i = 1, · · · , n. Then z(p) is even if and only if a0an > 0.

Proof. We begin by noting that without loss of generality, we may assume that b0 = 0
as factoring out xb0 does not impact z(p) or the sign of a0an. Furthermore, we may
assume without loss of generality that a0 > 0 as if it were negative we could consider
�p(x) instead and, again, this would not impact z(p) or the sign of a0an. The remainder
of the proof won’t be too rigorous for the sake of brevity. To make the proof rigorous is a simple
exercise.
Consider the case where an > 0. So we have p(0) = a0 > 0 and lim

x!1
p(x) = 1.

Hence at x = 0 the graph of p(x) is above the x-axis and for su�ciently large x we
1Any polynomial of degree n has n roots in C and thus  n roots in R�0. Any bound better than this

is considered non-trivial.
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remain above the x-axis. Hence, if p(x) was to cross the x-axis at some positive root
of p, it must cross back at some point, which will contribute 2 to z(p). Hence z(p)
must be even. A similar argument proves that if an < 0, then z(p) is odd. ⇤

We now proceed to the main theorem of �nding a non-trivial upper bound to
z(p). In fact, the result we’ll be interested in will be an obvious corollary to what we’ll
prove. We’ll prove a stronger result by induction, and this illustrates the fact that
sometimes it can be easier to prove stronger statements than weaker statements by
induction. The reason it’s easier (in some cases) to prove a stronger statement this
way is because when we assume the inductive hypothesis, we can assume more than
in the case of the weaker statement.

Theorem. Let p(x) 2 R[x]⇤. Then z(p)  s(p) and z(p) and s(p) have the same parity,
ie z(p) ⌘ s(p) (mod 2).

Proof. As mentioned, we’ll prove this result by (strong) induction: we’ll induct on
k := deg(p). The base case is k = 0, in which case z(p) = s(p) = 0 and so we have
both z(p)  s(p) and z(p) ⌘ s(p) (mod 2). Now �x k and suppose the result holds
true for all polynomials of degree  k � 1.
Let p(x) 2 R[x]⇤ be of degree k. Write p(x) = a0xb0+a1xb1+· · ·+anxbn+Uxk where

b0 < b1 < · · · < bn < k and U , ai < 0 8 i = 1, · · · , n. Now, if b0 < 0, we consider
p̃(x) := p (x)

xb0
2 R[x] and observe that z(p) = z(p̃) and s(p) = s(p̃). Furthermore, since

p̃ is a polynomial of degree  k � 1, by the inductive hypothesis it would follow that
z(p)  s(p) and z(p) ⌘ s(p) (mod 2). Hence, without loss of generality, we assume
b0 = 0.
Case 1. We �rst consider the case where a0a1 > 0. Then this implies that a0

and a1 have the same sign so s(p) = s(p0). But, also, by observing that p0(x) =

b1a1xb1�1 + · · · + bnanxbn�1 + kUxk�1 and using the fact that a0 and a1 have the same
sign, we deduce that

a0U > 0 () a1U > 0 () b1a1kU > 0

And so by the lemma, we have that z(p) ⌘ z(p0) (mod 2). Using the inductive
hypothesis, we have z(p0) ⌘ s(p0) (mod 2) and so z(p) ⌘ z(p0) ⌘ s(p0) ⌘ s(p)
(mod 2). Finally, by Rolle’s theorem we know that between any two roots of p there
exists at least one point for which p0 = 0. Hence, we must have that z(p0) � z(p) � 1,
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but since they have the same parity, it must be that z(p0) � z(p). Hence z(p) 
z(p0)  s(p0) = s(p).
Case 2. We now consider the case where a0a1 < 0. In this case, a0 and a1

have di�erent signs and so s(p) = s(p0) + 1. Like in the �rst case, we can use the
lemma, except this time to prove that z(p) ⌘ z(p0) + 1 (mod 2). Using the induc-
tive hypothesis we then have z(p) ⌘ z(p0) + 1 ⌘ s(p0) + 1 = s(p) (mod 2). Then
z(p)  s(p)  deg(p). Again, using Rolle’s theorem we have that z(p0) � z(p) � 1
and so z(p)  z(p0) + 1  s(p0) + 1 = s(p).

⇤

Corollary (Descartes’ Rule of Signs). Let p(x) 2 R[x]⇤. Then z(p)  s(p)  deg(p).

Proof. Immediate from the theorem. ⇤

In my opinion, this theorem is beautiful and uses only a little bit of analysis to
prove, but in fact, most of the time the use of techniques from analysis was overkill,
and was only stated to make things slightly more rigorous.
There is another similar theorem which may interest the reader. Sturm’s theo-

rem allows one to calculate the exact number of real roots certain polynomials have
in intervals of the form (a, b] based on the number of sign changes in a particular
sequence of numbers.

De�nition. Let p(x) 2 R[x]⇤. We de�ne the Sturm sequence of p as follows. p0 = p,
p1 = p0 and pi+1 = �R(pi�1, pi ) where R(pi�1, pi ) is the remainder upon Euclidean division
of pi�1 by pi .

Note that the Sturm sequence of p terminates after at most deg(p) terms. For any
x 2 R de�ne sp (x) as the number of sign changes in the sequence p0 (x) , p1 (x) , p2 (x) , · · · .

Theorem (Sturm’s Theorem). Let p(x) 2 R[x]⇤ be square-free. Then the number of
distinct real roots in the interval (a, b] is sp (b) � sp (a).

To see more maths from me, please do check out my YouTube channel where
I solve fun maths problems and prove cool theorems ( just like this one): https:

//www.youtube.com/jpimaths.
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When Randomness Isn’t Random
Jacob Mercer

A monkey and a typewriter...

Probability is, in essence, the study of randomness. However, ‘random’ means dif-
ferent things in common parlance and in mathematics. For example, one might say
that rolling an integer on a fair dice isn’t a random event because it always happens!
Semantics aside, mathematicians certainly have no problem with events taking prob-
ability zero or one. It’s axiomatic even, since P(;) = 0 and P(⌦) = 1. And in true
mathematical fashion there are many theorems dedicated to when an event has prob-
ability zero or one, sometimes called zero-one laws. Naturally, such theorems inhabit
a narrow space in between being too speci�c to be useful and/or non-trivial, and hav-
ing enough conditions to ensure that the probabilities can only take two values.
The aim of this article is to give a brief overview of some of the elegant zero-one

laws out there, outline their similarities and uses, and sketch their proofs.
Throughout the article we will call events with probability zero or one trivial and

sets of trivial events we will also call trivial. To understand Blumenthal’s zero-one law,
it will be helpful to be familiar with the de�nition of a Brownianmotion (a continuous
Markovian random walk).

Lemma (The Borel-Cantelli Lemmas). Fix a probability space (⌦, F, P), and let
(An)n2N be a family of events in F.

1. If
Õ
n2N P(An) < 1 then P(An occurs in�nitely often) = 0.

2. If (An) are independent and
Õ
n2N P(An) diverges then

P(An occurs in�nitely often) = 1

A famous thought experiment serves as an illustration: a monkey at a typewriter
will eventually produce Shakespeare’s complete works. Perhaps the mathematician
would clarify that the monkey must hit each key with non-zero probability, but oth-
erwise this is simply an application of lemma 1. In fact lemma 1 goes further: the
monkey will write the entirety of Shakespeare’s works in�nitely many times.
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Some mathematical background

We will take some time before the following theorems to introduce the mathematical
language we need to talk about them.
Throughout the rest of the article we will talk about random variables set in a

�ltered probability space, that is a probability space with a �ltration which may be
indexed by N or R�0: write it (Ft)t2I for some index set I . A �ltration is simply an
increasing sequence of sets of events, so for all s < t 2 I , Ft is a family of events
just like F, and Fs ✓ Ft. Given a random/stochastic process, we might consider
its natural �ltration. This is, as it sounds, a very natural choice of �ltration in which
Ft := f (Xs : s  t) is the f-algebra generated by the set {Xs : s  t}. In layman’s
terms, Ft is the smallest family of events which can be determined by {Xs : s  t}.
So at time t, the natural �ltration contains all the events you could know by time t
and nothing more.

De�nition. Let (Xn)n2N be a sequence of random variables. Then the tail algebra is the
de�ned as:

G :=
1Ÿ
n=0

f (Xn , Xn+1, ...)

In layman’s terms, since f (Xn , Xn+1, ...) is roughly what you can know given vari-
ables Xn , Xn+1, ..., so G is roughly what you can know given only the tail of the se-
quence.

Zero-One Laws

Theorem (Kolmogorov’s Zero-One Law). Let (Xn)n2N be a sequence of indepedent
random variables. Then the tail algebra is trivial.

This theorem is surprisingly powerful. In essence it says that any event determined
by all but �nitely many of the initial Xi has probability 0 or 1. For example, X1 + X2 + ...
converges with probability 1 or 0. The proof has an elegant simplicity as well: to
prove that some number x can only take values 0 or 1, one only needs to show that
it solves x(1 � x) = 0. And that’s precisely how the proof of Kolmogorov’s law
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works, by showing that any event G 2 G is independent of itself, and therefore that
P(G) = P(G \G) = P(G)2.
As an example, consider a set S which contains each integer n, independently of

other integers, with probability pn = P(n 2 S). Then the event that S contains an
in�nite sequence of consecutive integers is trivial. Of course whether this probability
is zero or one requires a little more information, but the power of this theorem is that
we have reduced the problem to two possible values.
Kolmogorov’s zero-one law is also useful in percolation theory in which one stud-

ies graphs (often lattices like Zd) in which each edge (or alternatively each vertex) is
present independently with probability p. In this setting, any event determined by
all but �nitely many edges is trivial. For example: does the graph contain an in�nite
component? Does the graph contain in�nitely many triangles?
Very similar in form to Kolmogorov’s zero-one law is the zero-one law of Hewitt

and Savage.

Theorem (Hewitt-Savage Zero-One Law). Let (Xn)n2N be a sequence of independent
and identically distributed random variables. Then any event whose occurrence is invariant
under �nite permutations is trivial.

This theorem, you will notice is very similar to Kolmogorov’s zero-one law. Like
Kolmogorov’s, theHewitt-Savage zero-one law can tell you thatP(Õi Xi converges) 2
{0, 1}. Or it can tell you about other events concerning the random walk (Sn) =

(Õn
i=1 Xi ) like that the event {Sn = 0 in�nitely often} is trivial.
Another example, for those familiar with the de�nition of Brownian motion (or

willing to look it up), is the following: consider the case where the i.i.d. random vari-
ables (Xn) are Xn = Bn�Bn�1, where (Bn) is the standard Brownianmotion. Then we
can apply theHewitt-Savage zero-one law to an event like {Bn > c

p
n in�nitely often},

and conclude that the probability of such an event is zero or one, and we can rule out
zero by Fatou’s lemma. The remarkability of this result is that we can thus arrive at
a result like: lim supBn/

p
n = 1— a result about a nowhere-di�erentiable stochastic

process in continuous time— simply by using a theorem about a countable sequence
of random variables and �nite permutations thereon.
The next theorem also has applications to continuous randomprocesses andBrow-

nian motion and may be familiar to students who have studied Part B Continuous
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Martingales and Stochastic Calculus.

Theorem (Blumenthal’s Zero-One law). Let (Xt)t�0 be a right-continuous Feller pro-
cess (for ease we might just think of Brownian motion) with P(X0 = x0) = 1. Let (FX

t ) be
the natural �ltration, and let FX

0+ :=
—
t>0 F

X
t . Then F0+ is trivial.

Blumenthal’s Zero-One law is another powerful result, and can prove fundamen-
tal facts about Brownian motion, like the fact that Brownian motion (started from 0)
always goes above zero at some point in any arbitrarily small interval. That is that,
for any Y > 0, we have sups<Y Bs > 0. Indeed we can also prove the result above, that
lim supBn/

p
n = 1.

Although maybe after all this connection isn’t too surprising. It is well known
that if Bt is a Brownian motion, then so is the stochastic processWt := tB1/t , hence
knowing about the natural �ltration of Bt as t goes to zero is like knowing about the
natural �ltration ofWt as t goes to in�nity. In the case of Brownian motion, then,
Kolmogorov’s zero-one law and Blumenthal’s zero-one law are just two sides of the
same coin, connected by the fact that Bt andWt are both Brownian motions.
The next zero-one law we will see is Levy’s zero-one law. This theorem again

walks the narrow line between being completely trivial — indeed it almost seems so
— and actually being a powerful result. I hope to convince you that it is the latter.
In this theorem we will need the notion of the family of events FX

1 which consists
of all the events which can be determined by knowing the entirety of some process
(Xn)n2N, ie FX

1 := f ((Xn)n2N).

Theorem (Levy’s Zero-One Law). Suppose Fn increases to F1 and A 2 F1. Then
E[1A |Fn] tends to 1A almost surely.

It seems almost trivial or obvious in the sense that of course E[1A |F1] = 1A, so
of course if Fn " F1, then it would make sense that E[1A |Fn] ! 1A. Now when
one comes to proving the result rigorously one sees that it is not quite so trivial. In
fact Levy’s zero-one law is powerful enough to prove Kolmogorov’s zero-one law as
a corollary:

Corollary. Let (Xn)n2N be a sequence of independent random variables. Then the tail al-
gebra is trivial.
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Proof. Let A be an event in the tail algebra. This means that, for all integers n, A is
independent of Fn , so P(A) = E[1A |Fn] ! 1A almost surely. ⇤

Levy’s zero-one law is therefore de�nitely non-trivial since it can prove Kolmogorov’s
zero-one law immediately. Another corollary is a dominated convergence theorem
(the dominated convergence theorem for conditional expectations).

Conclusion

Looking back at the results above we see that they reach, by their nature, a balance
between being trivial and needing conditions to be strong enough. This is evident
as well by the fact they all require in�nity. Somehow we can’t expect to �nd any
interesting statement about probabilities being trivial with only �nite objects in play,
but when limits to in�nity are involved we can �nd subtleties which leave events trivial
and/or independent of themselves.
As we have started to see through the examples in this article, these theorems

produce a number of interesting results of which we can be certain.
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The Success Paradox
Xingzhe Li

Introduction

What makes someone successful? Is it grit, persistence, determination, and hard
work? No doubt you cannot be successful without these qualities. However, what is
often neglected is the element of luck. This paper is inspired by a YouTube video
from the popular channel Veritasium titled ‘Is Success Luck or Hard Work’. The
aim is to determine the role of luck in success.
In the video by Veritasium, he made a simulation where 11 astronauts are selected

from 18,300 applicants. Speci�cally, each applicant is given a luck score and a merit
score to generate a total score with 0.05 weighting from the luck score and 0.95
weighting from the merit score. In this paper, we will abstract this experiment to ask
what is the expected luck score of someone that beat a proportion c of the population
when luck and merit score have a and 1� a weighting respectively. While the focus is
on highly competitive situations with low weighting of luck (high value of c and low
value of a), general results will be deduced as well.

Notation

We let T , H , and L be the random variables for total score, merit score and luck
score respectively. We assume H and L are independent. Next, let a be weight of
luck, and 1 � a be weight of ‘merit’ (essentially packaging all non-luck elements).
That is, T = aL + (1 � a)H . Valuing merit over luck, I will assume 0 < a  0.5.
For a random variable X , we let fX be its probability density function, and FX its
cumulative distribution function. Furthermore, let P (A) denote the probability of
an event A. Finally, we let 0 < c < 1 be the proportion of unsuccessful candidates.
We aim to �nd the expected luck score of a successful candidate, that is E(L|T > U),
where U = F�1

T (c). (E(X) being the expected value of X).



21

Uniform Distribution

We will start by analysing the scenario whereH and L follow a uniform distribution,
as was assumed in the video. That is, H , L ⇠U (0, 1). This implies 0  T  1.
First note that forT > U to be possible, L > 1

a (U � (1 � a)H ) � U+a�1
a . Let m =

max( U+a�1a , 0), we have E(L|T > U) =
Ø 1
m x fL |T>U (x)dx. Moreover, fL |T>U (x) =

d
dx (FL |T>U (x)).
We have P (T > U) = 1 � P (T < U) = 1 � c, but it is useful to �nd this in terms

of U. This will also help in identifying FT (t) and subsequently F�1
T (c) in terms of

c. (The reason we pursue this approach instead of directly �nding FT is because the
de�nition of m makes this approach cleaner to execute, as shown below.)

P (T > U) = P (aL + (1 � a)H > U)
= P (L > m, H > max(0, U�aL1�a ))
=

Ø 1
m

Ø 1
max (0, U�aL1�a ) 1dhdl

Case 1: U < a Note since we assumed a < 0.5, we know that U < 1� a, so m = 0.

P (T > U) =
Ø 1
0

Ø 1
max (0, U�al1�a )

1dhdl

=
Ø U/a
0 1 � U�al

1�a dl +
Ø 1
U/a 1dl

= 1 � U2

2a (1�a)

Case 2: a  U  1 � a In this case, we still have m = 0. Also, since 0  l  1,
al  a  U, U�al

1�a > 0.

P (T > U) =
Ø 1
0

Ø 1
U�al
1�a

1dhdl

= 2�2U�a
2(1�a)

Case 3: U > 1 � a In this case, m = U+a�1
a , U�al

1�a > 0.

P (T > U) =
Ø 1
U+a�1
a

Ø 1
U�al
1�a

1dhdl

= (1�U)2
2a (1�a)

Now we can write:
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P (T > U) =

8>>>>><
>>>>>:

1 � U2

2a (1�a) , 0  U < a
2�2U�a
2(1�a) , a  U  1 � a
(1�U)2
2a (1�a) , 1 � a < U  1

FT (t) =

8>>>>><
>>>>>:

t2
2a (1�a) , 0  t < a
2t�a
2(1�a) , a  t  1 � a
1 � (1�t)2

2a (1�a) , 1 � a < t  1

F�1
T (u) =

8>>>>><
>>>>>:

p
2a(1 � a)u , 0  u < a

2(1�a)
2(1�a)u+a

2 , a
2(1�a)  u  2�3a

2(1�a)

1 �
p
2a(1 � a) (1 � u) , 2�3a

2(1�a) < u  1

Now, we evaluate P (T > U , L < x) for x between 0 and 1 in much the same way.

P (T > U , L < x) = P (aL + (1 � a)H > U , L < x)
= P (x > L > max(0, U + a � 1/a) , H > max(0, U�aL1�a ))
=

Ø x
m

Ø 1
max (0, U�al1�a )

1dhdl

=

8>>>>><
>>>>>:

x � U2

2a (1�a) , 0  U < ax
x (ax�2a�2U+2)

2(1�a) , ax  U  1 � a
(1�U�a+ax)2
2a (1�a) , ax < 1 � a < a

A good sanity check is that when x = 1, we have P (T > U , L < x) = P (T > U) as
one would expect since L ⇠ U (0, 1). Another more geometric method to evaluate
P (T > U) is to consider the R2 plane with L andH axis. Since, (L, H ) is distributed
over the unit square evenly, the proportion of area above the line aL + (1 � a)H = U

in the unit square is P (T > U). The three cases refers to the scenarios where the
line intersects both axes between 0 and 1, one axis between 0 and 1, and neither axis
between 0 and 1.
To evaluate P (T > U , L < x), we could use the same geometric approach to

evaluate P (T > U |L < x) (by considering the rectangle bounded by L = 0, L =

x , H = 0, H = 1 instead of the unit square) then use the fact that P (L < x) = x in
the relevant range.
In any case, we now know that:
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FL |T>U (x) =

8>>>>>>>><
>>>>>>>>:

2ax (1�a)�U2
2a (1�a)�U2 , U < ax
ax (ax�2a�2U+2)
2a (1�a)�U2 , ax  U < a

x (ax�2a�2U+2)
2�2U�a , ax  a  U  1 � a

(1�a�U+ax)2
(1�U)2 , ax  1 � a < U

By taking x = U/a and considering the three cases U < a, a  U  1 � a, and
1� a < U, one can see that FL |T>U is in fact continuously di�erentiable. (It is helpful
to notice in the second case, ax = a = U so x = 1 and in the third case, ax = 1� a = U

implying a = 0.5 = U , x = 1.) Thus, we can apply integration by parts to �nd
E(L|T > U).

E(L|T > U) =
Ø 1
m x fL |T>U (x)dx

= xFL |T>U (x)
���1
m
�

Ø 1
m FL |T>U (x)dx

=

8>>>>><
>>>>>:

1 � 1
2(1�c) +

2c
p
2a (1�a)c

3a (1�c) , c < a
2(1�a)

1
2 + a

12(1�a) (1�c) ,
a

2(1�a)  c  2�3a
2(1�a)

1 �
p
2a (1�a) (1�c)

3a , 2�3a
2(1�a) < c
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Above is the graph of E(L|T > U) as a function of c with a = 0.05 and a = 0.4
respectively. First, it is worth noting that the graph increases more gradually (with
less sharp of a turn) for larger values of a. This means the smaller the role of luck, the
longer the function is stable for, that is the higher threshold you can achieve (greater
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value of c) before you are expected to be signi�cantly ‘lucky’. In the case where
a = 0.05, the expected luck score only reaches 0.6 when T > 0.9561 (roughly).
However, to achieve highly competitive/challenging success like in the astronaut ex-
ample, you are required to be somewhat lucky and expected to be incredibly lucky.
When 11 astronauts are chosen from 18300 applicants, the applicants need to be
in the top 0.06%, which in our analogy means c = 0.9994. This means that the
minimum luck score you can have is U+a�1

a = 0.850, and the expected luck score of
the successful applicants are about 0.9497. In other words, very lucky. In fact, the
expected luck score does not fall under 0.8 until a < 0.003.
Moreover, FT (x) = 1 � (1�x)2

2a (1�a) when x > 1 � a. Hence, fT (x) = 1�x
a (1�a) , and

E(T |T > U) = 1
P (T>U)

Ø 1
U

x (1�x)
a (1�a) dx =

2U3�3U2+1
3(1�U)2 when U > 1�a. Taking the numbers

from the astronaut example, c = 0.9994 and U = F�1
T (c) = 0.9925, gives E(T |T >

U) = 0.995. This means that E(H |T > U) = E (T |T>U)�aE (L |T>U)
1�a = 0.9974. So,

unsurprisingly, the merit score of a successful individual is expected to be even higher
than their luck score. However, a good way to capture the importance of luck is by
noting the fact that P (T > 0.9925|H = 0.9974) = P (L > 0.8994) = 0.1006. In
other words, if you were an astronaut applicant, even if you worked as hard as the
average successful applicant, your chance about being successful is about 1 in 10.

Normal Distribution

Fortunately for the hard-working readers, the above conclusions rely on the assump-
tion that both luck and merit follow a uniform distribution. While at �rst glance this
seems reasonable, you might �nd it di�cult to justify. Instead, we usually consider
similar variables, e.g. IQ, to be normally distributed. It could make more sense if
both the luck and merit of the population are distributed on a bell-shaped curve, with
the majority closer to the population average. So, in this section, we will consider the
scenario where L, H ⇠ N (0, 1).
We maintain T = aL + (1 � a)H , where 0 < a  0.5 is the weight of luck

in the total score. Further, c is, as before, the cut-o� threshold, the proportion of
the population a candidate must beat to be successful. Our objective is still �nding
E(L|T > U) =

Ø 1
�1 x fL |T>U (x)dx, where fL |T>U (x) = d

dx (FL |T>U (x)).
Because of the beautiful property that linear combinations of normal distributions
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are still normal, we have T ⇠ N (0, a2 + (1 � a)2), hence Tp
a2+(1�a)2

⇠ N (0, 1).
Therefore,

P (T > U) = 1 � P (T < U)

= 1 � P
✓

Tp
a2+(1�a

2
)
< Up

a2+(1�a)2

◆

= 1 ��
✓

Up
a2+(1�a)2

◆

� being the cumulative distribution function of the standard normal distribution.
Since, P (T > U) = 1 � c we can conclude U = ��1 (c)

p
a2 + (1 � a)2.

On the other hand, we have P (T > U , L < x) =
Ø x
�1

1p
2c
e�

l2
2 (1 � �( U�al1�a ))dl,

di�erentiating by x gives 1p
2c
e�

x2
2 (1 � �( U�ax1�a )). A sanity check is to note that if

a = 0, we get P (T > U , L < x) = 1p
2c
e�

x2
2 (1��(U)), which is what we would expect

since then T and L are independent and T ⇠ N (0, 1). Another approach to �nd
P (T > U , L < x) is to compute the covariance of T and L to derive the bivariate
normal distribution function speci�c to this situation. In any case, we arrive at

fL |T>U (x) =
1p

2c (1 � c)
e�

x2
2

⇣
1 ��(U � ax

1 � a )
⌘

Finally, we have

E(L|T > U) = 1
1�c

Ø 1
�1 x

1p
2c
e�

x2
2

�
1 ��( U�ax1�a )

�
dx

= 1
1�c

ap
2c (a2+(1�a)2)

e�
��1 (c)2

2

The graph of this as a function of c when a = 0.05 and a = 0.4 are given below.
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It may not be immediately obvious from the graphs and formula (as both numer-
ator and denominator approach 0) but E(L|T > U) ! 1 as c ! 1 for all values of
a. This can be shown using L’Hôpital’s rule.
The above result tells us the expected value of L when T > U but what is the

meaning of this value relative to the population? To �nd out, we can simply com-
pute �(E(L|T > U)). The following are the graphs when a = 0.05 and a = 0.4
respectively.
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Again, it is not clear in the �rst graph that for when c = 1, �(E(L|T > U) = 1, but
we now know this to be the case.
Surprisingly, the somewhat extreme result in the previous section (when L and

H are uniformly distributed) is not reproduced here. First of all, since L and H
are unbounded, there is not minimum threshold for L (on a separate note, this is
also the reason why the calculations for this case are much more straightforward).
Moreover, going back to the astronaut example where c = 0.9994 and a = 0.05, we
get E(L|T > U) = 0.1843. Considering the fact that L ⇠ N (0, 1), the value is quite
low. In fact, �(E(L|T > U)) = 0.5731 which means that the chance of having a luck
score higher than what is expected to be successful is as high as 0.4269, compared to
0.0503 when L and H are uniformly distributed.
Of course, when the weight of luck, a, is higher, �(E(L|T > U)) becomes close

to 1 at much smaller values of c. This is not unexpected: if luck plays a large role in
success, then you would expect successful people to be quite lucky.
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Conclusion

Setting aside the two di�erent models for the time being, there are two parameters
that determine the expected luck of a successful individual: competitiveness (c) and
weight of luck (a). To best interpret our results, I will split all situations into 4 cate-
gories: competitive and high weight of luck (1), competitive and low weight of luck
(2), not competitive and high weight of luck (3), not competitive and low weight of
luck (4).
Situation (1) is characterised by high values of c and a. In this case, both models

more-or-less agree that a successful individual needs to have high luck score. This
matches our intuition: consider a situation where a few people are selected from a vast
group of applicants largely based on luck, of course those selected are fairly lucky.
Situation (3) is characterised by low c and high a. Again, both models agree that

successful people are generally fairly lucky. While in this case success is not as se-
lective, the high weight of luck means one would still expect successful individual to
have higher than average luck score.
Situation (4) is characterised by low c and low a. Both models indicate that suc-

cessful individuals do not need to have signi�cantly higher than average luck, which is
what we would expect. Considering applying to a low-barrier, entry-level job where
the selection process is relatively deterministic (not much luck involved). Then, you
wouldn’t expect most successful applicants to have a noticeably high luck score.
The situation that I am most interested in and the situation where the two models

show signi�cant di�erence is situation (2), with high c and low a. This situation best
re�ects a lot of crucial processes in life, such as applications to highly competitive
opportunities (university, career, etc) where the selection process is mostly merit-
based. With a bit of imagination and hand-waving, it can also be used to estimate
more abstract processes like starting a �rm or searching for love. Depending on what
you deem to be the more appropriate distribution for luck and merit, the expected
luck of successful individuals varies greatly. If you believe that the distribution for
luck and merit is uniform, then not only are you to expect successful people to be
absurdly lucky, you can also conclude that a certain threshold of luck is required to
be successful. On the other hand, if you believe that the distribution for luck and
merit is normal, then there is no minimum luck score for successful individuals and
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whilst we do expect them to be luckier than average, the di�erence is not signi�cant.
I would also like to make it clear that this paper is not meant as a comment or

assertion about the reality of luck and its role in success, only the theoretical aspect.
In fact, the result of this paper is not restricted to luck. We could have substituted
any other factor instead. The main point is that a factor with a small weight can still
potentially play a decisive role in a process. The magnitude of this phenomenon
is dependent on the way the factor is distributed in the population. To apply the
theory discussed in this paper to the real world would require deep understanding of
the factors that determine success, their e�ects on each other, and their distribution
in the population.
For those interested in the reality of the success paradox, I strongly recommend

checking out the original YouTube video. It mentions some interesting statistical
evidence. For example, it has been found that 40% of the hockey players in top
leagues have a birthday in the �rst quarter of the year while only 10% have a birthday
in the last quarter of the year. The presumed reason for this is that the cut-o� date for
kids hockey leagues is January 1st, which means kids with an early birthday would
be up to a year older and thus more developed than the other kids in the league.
This gives themmore game time, attention from the coaches, etc, which makes them
better players. The e�ect compounds through the years, resulting in the statistical
disparity of birthdays in pro hockey league.
Another example is the eight Olympics world records in track and �eld (men’s and

women’s 100m spring, 100m hurdle, long jump, and triple jump). When the records
were set, in 7 of these occurrences, the athlete who set the record had a tailwind.
While each of these athletes were of course extremely skilled in their respective �eld,
a little luck helped them when setting the world records.
For further exploration, the book Success and Luck: Good Fortune and the Myth of

Meritocracy by Robert H. Frank was credited as the inspiration of the original video
and contains more fascinating examples.
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Associative Metrics
Andres Klene

Throughout, the naturals include 0 (as they always should!).

Introduction

Groups and metric spaces are quite di�erent mathematical objects in spirit; the for-
mer are abstract sets of symmetries, while the latter are sets with a rigid geometry.
Of course, an object X can be both a metric space and a group at the same time (for
example, X = a normed real vector space). However, the group operation and the
metric are normally completely di�erent functions. One one hand, a group operation
is a binary operation X⇥X ! X which is associative, has an identity and has inverses
— on the other, a metric is a positive de�nite, symmetric function X ⇥ X ! [0,1),
which satis�es the triangle inequality.
There is one obvious similarity: both are functions from X⇥X . Furthermore, if X

is a subset of [0,1) then the metric might corestrict1 to a function X ⇥X ! X (this
is the case, for example, when X = N and the metric is the standard one). Given a set
X ✓ [0,1), one can therefore reasonably ask: is there a binary operation X⇥X ! X
which satis�es both the group axioms and the metric axioms?
It will turn out that associative metrics are group operations, so an equivalent ques-

tion is: does there exist an associative metric on X? The late mathematician John Conway
asked this in the case X = [0,1); we will answer his question in due time.

Associative metrics are group operations

As the name suggests, an associative metric on X is a function d : X ⇥ X ! X which
satis�es the metric axioms and is associative, i.e. we have

d(x , d(y , z)) = d(d(x , y) , z)
1Corestricting refers to restricting the codomain. If f : A ! B is a function and f (A) ✓ C, then

f |C : A! C is the same mapping with a smaller codomain.
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for all x , y , z 2 X . This looks a bit clunky; to avoid writing things in terms of nested
functions, we will use in�x notation x⇤y = d(x , y) (as is common for binary operations
in general). The above condition now looks more familiar:

(A0) associativity: x ⇤ (y ⇤ z) = (x ⇤ y) ⇤ z.

To get comfortable with this notation, here are the metric axioms. For all x , y , z 2 X ,

(M1) de�niteness: x ⇤ y = 0 () x = y,

(M2) symmetry: x ⇤ y = y ⇤ x,

(M3) the triangle inequality: x ⇤ z  x ⇤ y + y ⇤ z.

First we quickly show that adding associativity to the metric axioms is enough to
guarantee a group structure.

Proof. Associativity is given, so we just need to check the existence of an identity and
inverses. Using (A0) and (M1),

0
(M1)
= 0 ⇤ 0 (M1)

= 0 ⇤ (x ⇤ x) (A0)= (0 ⇤ x) ⇤ x (M1)
=) 0 ⇤ x = x.

So 0 is the identity element. Since 0 = x ⇤ x, every element is self-inverse. ⇤

This result is useful, but the discusson has not yet addressed an obvious concern:
do associative metrics even exist?

Examples and non-examples

Most metrics are not associative. For example, consider the standard metric on N:
we have ��|1 � 2| � 3�� = |1 � 3| = 2,

but ��1 � |2 � 3|
�� = |1 � 1| = 0.

The discrete metric on N, given by

(x , y) 7!
8>><
>>:
0 x = y

1 x < y ,
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is not associative either, for almost exactly the same reason. There aren’t a lot of
other metrics one might immediately try, so let’s back up and look at �nite subsets of
N �rst. Note that since 0 is the identity, any set which admits an associative metric
must contain 0.

(|X | = 1) The case X = {0} is trivial. There is exactly one binary operation on X ; if you
are really bored, you are invited to check that it satis�es both the group axioms
and the metric axioms. Here is the (sad-looking) Cayley table:

⇤ 0
0 0

(|X | = 2) The case X = {0, 1} is similar: there are four binary operations, but only one
metric, which happens to be associative. The Cayley table is

⇤ 0 1
0 0 1
1 1 0

and we can see X � Z2.

(|X | = 3) Recall that 0 is the identity, and every element has order 2. This forces the
following Cayley table, which leads to a contradiction.

⇤ 0 1 2
0 0 1 2
1 1 0
2 2 0

{ #.

Moreover, this contradiction does not depend on the actual values 1 and 2;
every set with 3 elements does not admit an associative metric.

(|X | = 4) The case X = {0, 1, 2, 3} is not as immediate. By the same reasoning as above,
the following Cayley table is forced.

⇤ 0 1 2 3
0 0 1 2 3
1 1 0
2 2 0
3 3 0

{

⇤ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0
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This operation satis�es the triangle inequality, so it is the unique associative
metric on {0, 1, 2, 3}. Additionally, we can see X � Z2 � Z2.

The last example highlights a subtle issue, which is that X cannot be too “unevenly
spaced”. For example, the set {0, 1, 2, 10100} does not admit an associative metric,
because the group law would force 1 ⇤ 2 = 10100 which does not satisfy the triangle
inequality 1 ⇤ 2  1 ⇤ 0 + 0 ⇤ 2. So in general there is some dependence on the actual
values in the set, other than its cardinality.

Metrics on in�nite sets

What links the three examples that worked? Surprisingly, they are all restrictions of
the same function— note how each Cayley table is contained in the next. It turns out
that this function is the binary bitwise exclusive-or operation (denoted ���), which
is de�ned as follows: given two natural numbers, write them in binary and perform
the logical exclusive-or operation on each pair of bits. In the following examples,
a subscript of 2 indicates a number is in binary, and no subscript indicates it is in
base-10.

12
��� 12

02

= 1
= 1
= 0

102
��� 112

12

= 2
= 3
= 1

1112
��� 1012

102

= 7
= 5
= 2

Hence 1 ��� 1 = 0 (anything ��� itself is 0), 2 ��� 3 = 1 and 7 ��� 5 = 2.
This idea works on more than just the naturals. Denote by N[ 12 ] the set of non-

negative fractions with denominator equal to a power of 2. In other words, these are
precisely the numbers with �nite binary expansions. There is an obvious extension
of ��� from N to N[ 12 ], which is also given by comparing bits in the binary represen-
tation. For example:

10.12
��� 11.12

1.02

= 2.5
= 3.5
= 1

111.102
��� 101.112

10.012

= 7.5
= 5.75
= 2.25

Here is the point: ��� is an associative metric on both N and N[ 12 ]! Proving this is
just checking axioms, so...
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Exercise. Check that ��� is an associative metric on N[ 12 ].

Now we are in a position where Conway’s question— “does there exist an associa-
tivemetric on [0,1)?” — seems like it is within our grasp. After all, real numbers also
have binary representations. Generically the representations will be in�nite, but the
same principle might still apply. So, does ��� extend further from N[ 12 ] to [0,1)?
As it turns out, no. The obstacle is that when we allow in�nite binary strings,

representations of elements in N[ 12 ] are no longer unique (for example, 0. §1 = 1).
Naively using bitwise ��� then suggests

12 ��� 12 = 0. §12 ��� 12 = 1. §12 = 2,

despite the fact that we expect 12 ��� 12 = 0. We could try to �x this by arti�cially
selecting which representations to pick, but this fails as well. Suppose we select only
the �nite ones, so that we don’t allow expansions with a tail of 1s (so for example,
0. §1 is not allowed). Then the expansions for 1/3 and 2/3 are 0. §0 §1 and 0. §1 §0 respec-
tively, which become 0. §1 when ���’d together. On the other hand, if we don’t allow
tails of 0’s then 0. §1 ��� 1. §1 = 1.0 which is not allowed. In short, whichever set of
allowable representations we pick, ��� is not closed as a binary operation on those
representations. It seems all hope is lost...
However, in 2010 it was shown (on a MathOver�ow thread) that there actually

does exist an associative metric on [0,1). Unfortunately, this is purely an existence
result; the proof is completely non-constructive and relies on the Axiom of Choice2.
This means we can’t write down an explicit expression or description for this function
in the same way that we can for ��� on N and N[ 12 ].
So, Conway’s question has been answered, but the non-explicitness makes the

solution a bit disappointing. Luckily, there are still ways of explicitly constructing
associative metrics. The next section describes one such method.

2They use a trans�nite induction argument, after well-ordering [0,1). We
refer the interested reader to https://mathoverf�ow.net/questions/16214/

is-there-an-associative-metric-on-the-non-negative-rea�s.
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More associative metric spaces via the symmetric di�er-
ence

Another way of thinking about binary representation is as follows: every �nite subset
of {2n : n 2 Z} can be uniquely identi�ed with a number in N[ 12 ] given by adding
together all the elements of the set. For example,

{2�1, 1, 2, 4} 7! 2�1 + 1 + 2 + 4 = 7.5.

This means there is a bijective correspondence
Õ
: P�nite ({2n : n 2 Z}) ! N[ 12 ]

called ‘sum the elements’. (Here, P�nite denotes the collection of �nite subsets. This
notation follows closely that for the collection of all subsets, which is often denoted
by P for ‘power set’).
Now, here is the key idea: when pulled back under this bijection, the ��� operation

becomes the symmetric di�erence 4, de�ned by A4 B B (A[B) \ (A\B). Explicitly,
we have Õ(A) ���Õ(B) = Õ(A 4 B)

for all A, B 2 P�nite ({2n : n 2 Z}). For example,

{2�1, 1, 2, 4} {4�1, 2�1, 1, 4} {4�1, 2}

7.5 5.75 2.25

Õ
4

Õ
=

Õ
��� =

It is worth thinking about exactly what’s going on here. On each pair of binary bits,
the ��� operation outputs 1 i� exactly one of them is 1; otherwise, it outputs 0. This
corresponds exactly to the “union minus intersection” behaviour of 4. In this sense,
the symmetric di�erence is the exclusive-or analogue in the world of sets.
This perspective lets us work backwards, with the purpose of de�ning associative

metrics on more general sets. Suppose we are given a setB ⇢ [0,1) with the prop-
erty that all �nite sums of subsets of B are unique. What this means is that

Õ(A) = Õ(B) () A = B for all A, B 2 P�nite (B) (¢)

Write span(B) B {Õ(A) : A 2 P�nite (B)} for the collection of all sums of �nite
subsets of B, and de�ne ⇤ to be the unique binary operation satisfying the following
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identity: Õ(A) ⇤ Õ(B) = Õ(A 4 B).

The algebraically inclined reader might enjoy the corresponding commutative dia-
gram:

P�nite (B)2 P�nite (B)

span(B)2 span(B)⇤

4

Õ2 Õ

You might be able to guess what we claim: that ⇤ is an associative metric on span(B).

Proof of the claim. Associativity follows from the associativity of 4. It remains to show
the metric axioms hold. For all A, B 2 P�nite (B),

(M1): We have
Õ(A) ⇤ Õ(B) = 0 () Õ(A 4 B) = 0 () A 4 B = ú () A =

B () Õ(A) = Õ(B), so (M1) holds.

(M2): Symmetry holds by commutativity of 4.

(M3):
Õ(A) ⇤Õ(B) = Õ(A4B)  Õ(A) +Õ(B). This is enough because x ⇤ z  x + z
implies x ⇤ z = x ⇤ y ⇤ y ⇤ z  x ⇤ y + y ⇤ z, which is (M3).

So, ⇤ is an associative metric on span(B). ⇤

When B = {2n : n 2 Z}, we recover the motivating example, where span(B) =
N[ 12 ] and ⇤ = ���. For a novel example, take B = {2q : q 2 Q} instead. It is not
immediately clear that this choice of B satis�es (¢); we leave this as an exercise3.
The construction outlined above automatically de�nes an explicit associative metric
on span(B), which can alternatively be expressed as

span(B) = N[ 12 , 1p
2
, 1

3p2
, . . . ].

3Solution: https://mathoverf�ow.net/questions/382784/representing-finite-sums-of-rationa�-powers-of-2
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Conclusion

I want to leave you with something to think about. In general, we know how to de�ne
an associative metric on a set X , given that X is of the form span(B) for someBwith
property (¢). Try to come up with your own set which is of this form. What does
the associative metric look like? Can you �nd such a set which is uncountable? Can
you prove that the set of non-negative rationals Q�0 is of this form? What about
[0,1)?
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Optimal dice for the game of Ludo
Max French

Introduction

For most dice-based board games, the number of sides on the dice is negatively cor-
related with the mean number of moves in a game. Ludo is an exception to this rule:
the rules of Ludo disadvantage both small and large numbers of sides on the dice.
This means that the question of what dice minimises the number of throws to �nish
a game of Ludo does not have a trivial answer.

The Rules of Ludo

Ludo is a dice-based board game played by up to four players. Each player has four
pieces and the game ends when one player completes a lap of the board with all of
their pieces. Pieces start out of play in their player’s “yard” and can only enter the
board when the player rolls a maximum score. The piece is then placed onto that
player’s starting square and has to travel exactly 44 squares to �nish, where each roll
of the dice determines how many squares the piece must move.
For ease of calculation I consider a single player playing with a single piece. This

is done with a series of three increasingly accurate models.

Model One

In model one we calculate the mean number of rolls of an x-sided dice for a piece to
travel 44 tiles.
Let Ra be the mean roll for a dice with x sides. The dice roll has uniform distribu-

tion over {1,2,...,x}. Hence Ra is simply the expectation of the uniform distribution
and we have

Ra =
x + 1
2

.

Let S be the square that the piece �nishes on. Then S can take any integer value
s1 where 44  s1  43 + x and for each s1 there are k = x + 44 � s1 possible �nal dice
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rolls. We can �nd the probability of �nishing on some square s1, P(S = s1), by taking
a weighted average, so

P(S = s1) =
kÕ43+x

s1=44 k
.

We can simplify
Õ43+x
s1=44 k. We know that k = x + 44 � s1, so

43+x’
s1=44

k =
43+x’
s1=44

x + 44 � s1 =
x�1’
i=0

x � i =
x’
j=1

j =
x(x + 1)

2
.

Therefore
P(S = s1) =

x + 44 � s1⇣
x (x+1)
2

⌘ =
2x + 88 � 2s1
x(x + 1) .

Let Rs1 be the mean number of rolls to �nish on the square s1. Then

Rs1 =
s1
Ra

=
s1⇣
x+1
2

⌘ =
2s1
x + 1 .

Finally, let y be the mean number of rolls for a single piece to �nish. Then

y =
43+x’
s1=44

P(S = s1)Rs1 =
43+x’
s1=44

✓
2x + 88 � 2s1
x(x + 1)

◆ ✓
2s1
x + 1

◆
.

This can be simpli�ed to

y =
4

x(x + 1)2
43+x’
s1=44

s1 (x + 44 � s1).

This equation is plotted in Figure 1. As would be expected, the mean number of
rolls to �nish is inversely proportional to the number of sides on the dice.
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Model Two

In model two we introduce the rule that a maximum score must be rolled for a piece
to enter play.
Let Rb be the average number of rolls before a maximum score is rolled. The

number of rolls before a maximum score is rolled has geometric distribution with
parameter 1/x. Thus Rb is simply the expectation of this distribution and we have

Rb =
1⇣
1
x

⌘ = x.

The mean number of rolls to �nish is the sum of the mean number of rolls for a
piece to enter play and the mean number of rolls to travel at least 44 tiles. Therefore

y = x + 4
x(x + 1)2

43+x’
s1=44

s1 (x + 44 � s1).

This equation is plotted in Figure 2. It has a distinct minimum, and for an integer
number of dice sides the minimum number of mean rolls occurs at x = 8.
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Model Three

In model three we introduce the rule that a piece must �nish exactly on tile 44.
For model one we calculated the mean number of moves for a piece to �rst reach

some square s1 with 44  s1  43+ x. We can use the same method to �nd the mean
number of rolls for a piece to �rst reach some square s2 with 44 � x  s2  43. Let
us call this number Rc. Then we have

Rc =
4

x(x + 1)2
43’

s2=44�x
s2 (44 � s2).

Once the piece has entered play and �rst reached some square s2 there are three
possibilities for the value of each roll, r :

1. r = 44 � s2

2. r > 44 � s2

3. r < 44 � s2
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The probability of the �rst case is 1x , and if the �rst case occurs then the piece �n-
ishes. If the second case occurs then s2 remains constant and therefore the probability
of the �rst case on the next roll remains 1x . If the third case occurs then s2 increases
but the probability of the �rst case on the next roll remains 1x .
Let Rd be the mean number of rolls before 44 � s2 is rolled. The probability of

rolling 44 � s2 is the same as the probability of rolling a maximum score so

Rd = Rb = x.

Therefore the mean number of rolls for a piece to �nish after �rst reaching some
square s2 is x.
The mean number of rolls to �nish is the sum of the mean number of rolls for a

piece to enter play, the mean number of rolls for a piece to �rst reach some square s2
with 44 � x  s2  43, and the mean number of rolls for a piece to �nish after �rst
reaching some square s2. Therefore

y = 2x + 4
x(x + 1)2

43’
s2=44�x

s2 (44 � s2).

This equation is plotted in Figure 3. Again there is a distinct minima, and for an
integer number of dice sides the minimum mean number of rolls occurs at x = 6.
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Predictions and Conclusions

A perfectly accurate model would require the introduction of multiple pieces and
players. Finding the optimal n-sided dice would then necessitate consideration of
di�erent strategies, and so this is not explored here.
For the simpli�ed model considered here, the move optimal number of sides is 6.

I predict that in a perfect model this number would increase. After the �rst piece has
entered the game the next three pieces would take fewer "wasted" moves on average
to enter the game as non-maximum rolls now have utility in moving a piece already
on the board, and so the advantage of dice with fewer sides is somewhat negated.
Similarly,the introduction of more players would also favour dice with more sides.
Pieces that spend less time on the board have a lower probability of being taken, and
so dice with fewer sides are put at a disadvantage.
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Re�ection Groups and Uniform Polytopes
Gavin Jared Bala

Introduction

The dihedral group I2 (n) and the symmetric group Sn are two famous families of
groups that are usually described di�erently: the dihedral group as the symmetries
of a regular n-gon, and the symmetric group as the permutations of the numbers 1
up to n.
But the symmetric group has a natural geometric meaning too. I2 (3) � S3, as the

symmetries of an equilateral triangle take vertices to vertices, and since the vertices
are all equidistant, we can realise every possible permutation of them. This gen-
eralises to higher dimensions: the symmetric group Sn is the symmetry group of a
regular (n � 1)-simplex, as its vertices are all equidistant. This can be proved by in-
duction: choose where to send one vertex, then note that an n-simplex is a pyramid
based on an (n � 1)-simplex.
Furthermore, both groups are built out of re�ections. The symmetries of the n-

gon are rotations and re�ections, and successively re�ecting in two axes an angle U/2
apart gives a rotation by U: 

cos U sin U
sin U � cos U

!  
1 0
0 �1

!
=

 
cos U � sin U
sin U cos U

!

Since we can rotate the polygon to make any re�ection the one described by ( 1 0
0 �1 ),

taking U = 2c/n lets these two matrices generate I2 (n).1 [6, p. 5]
For the symmetric group, note that (composing permutations right-to-left):

(12) (23) (34) · · · (n � 1 n) = (1234 · · · n)

Swapping out the numbers to deal with any cycle, we build up all elements of the
symmetric group from the transpositions (2-cycles). These are indeed re�ections
when we interpret Sn as simplex symmetries!
Re�ection groups therefore seem important, so we will analyse them.
1This interpretation justi�es writing I2 (1) = Z/2Z and I2 (2) = Z/2Z ⇥ Z/2Z, the Klein-four group,

even though there aren’t regular 1-gons and 2-gons on the plane.
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Presentations

Take two re�ections in our group, RU and RV . (If there’s only one, the group is
trivially Z/2Z.) In n dimensions, a re�ection leaves an (n � 1)-plane constant, and
switches the half-spaces to either side.
If the group is discrete (that is, it cannot have elements doing arbitrarily close

things), the angle between the two hyperplanes of re�ection can only be zero (if they
are parallel) or a rational multiple of c. (Otherwise their product would create ro-
tations of an irrational fraction of a turn.) As above, which multiple it is can be seen
from the order of RURV :

R2U = R2V = (RURV )o (U , V ) = 1 o(U , V ) 2 N [ {1}

Ernst Witt (1911-1991) proved that the o(U , V ) determine the group, as follows:2 [2]
Consider not only the hyperplanes of our re�ections, but also where they’re sent

to by all the other re�ections. These create a kaleidoscope partitioning hyperspace
into a number of congruent regions, and we can take the generating re�ections to be
those bounding any particular region. Let’s mark one region and call itW.
We can then get fromW to any of its neighbouring regions by re�ecting in one

of its boundary hyperplanes: callWRU the region we get to from re�ecting in RU .
ButWRU is congruent toW, and its boundary re�ections equally well generate the
group, so we can continue this procedure to get toWRURV ; toWRURVRW ; and so
on. This creates a path along which we travel from region to region by the boundaries
named by the subscripts.
Suppose we had some relation not accounted for by the above. As every element

is self-inverse, we can move everything to one side: RURV · · ·Ra = 1. That means
thatWRURV · · ·Ra =W, and our path is a loop.
Contract this loop continuously to a point. There are only two things that can

happen while we do that. We eliminate dead ends - going into a region and then
back out - by the relation R2U = 1. And we eliminate vertex-crossings by the relation
(RURV )o (U , V ) = 1. So those two relation types must generate the group.

2If o (U , V ) = 1, then RU = RV and we can drop one of them from the generators; and if o (U , V ) = 2,
then RU and RV commute and the group is a direct product. We already saw an example with I2 (2) =

Z/2Z ⇥ Z/2Z = I2 (1) ⇥ I2 (1).
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Figure 1: Moving the loop past a vertex invokes the relation (RURV )o (U , V ) = 1. Here
we illustrate the situation for the group Ã2, generated by three re�ections in the sides
of an equilateral triangle: R2U = R2V = R2W = (RURV )3 = (RVRW )3 = (RURW )3 = 1.

Classi�cation

Linear algebra lets us classify which of the above groups can be exhibited as �nite
re�ection groups in Euclidean space. If we take the normals ni to the mirrors gener-
ating a �nite re�ection group, we can de�ne a matrix A by

Ai j = ni · n j = � cos c

o(i , j)

Taking that last expression, we could de�ne a matrix

Ai j = � cos c

o(i , j)

for any set of values of o(i , j). Euclidean space admits a positive-de�nite dot product,
i.e. x ·x > 0 when x < 0. If the group really can be a �nite Euclidean re�ection group,
then the bilinear form we get from it should be positive-de�nite too, i.e. xTAx > 0
when x < 0. So the classi�cation boils down to computing eigenvalues. [6, p. 31] [8]
For convenience we introduce here the Coxeter-Dynkin diagram to graphically

describe the cases that result. This is a graph with one vertex for each generating
re�ection. If o(i , j) � 3, we draw an edge between those two vertices, labelling it
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with o(i , j); since the mark 3 is quite common, it is usually left o�. If o(i , j) = 2, we
leave them disconnected.3

The �nite re�ection groups are then built up as direct products of some building
blocks. Those come in four in�nite classes and six sporadic cases.4

An Bn = Cn 4 Dn

E6 E7 E8
F4 4 H3

5 H4
5

I2 (n) n

Most of these are the symmetry groups of regular polytopes. We’ve already seen An
as the symmetric group Sn+1, which is the symmetry group of the n-simplex;5 and
I2 (n) is the dihedral group, the symmetry of the n-gon. Bn = Cn is the symmetry
group of the n-cube.6 H3 is the symmetry of the dodecahedron, and H4 that of its
four-dimensional counterpart, the 120-cell. F4 is the symmetry of the 24-cell, a
four-dimensional regular polytope that has no precise analogue in higher or lower
dimensions.
The branched Coxeter diagrams don’t represent regular polytopes. Dn contains

half the symmetries of Bn. It is the symmetry group of the n-demicube, which is what
you get if you keep every other vertex of the n-cube and delete the others.
The high-dimensional sporadic groups E6, E7, and E8 are di�cult to describe, as

they lack good low-dimensional analogues. E8 is in some way the octonions’ answer
to the Gaussian integers on the complex plane: the units from a natural set of densely
packed integers on which unique factorisation theorems hold. (The quaternions’ an-
swer is F4; we could view the Gaussian integers as coming from B2.) [1, p. 99]

3So when a graph breaks into multiple components, the group it represents is a direct product.
4The odd notation, with the letter G missing and two letters for one family, comes from Lie theory.

G2 is an alternative name for I2 (6).
5Since in this case we’ve seen the generators, we can con�rm the Coxeter-Dynkin diagram directly:

two transpositions with no elements in common commute, but when they have a common element, their
product is a 3-cycle.

6This is also the signed symmetric group: the set of permutations c of {�n , �(n � 1) , · · · , n � 1, n }
such that c (�i) = �c (i) for all i. If we have a unit cube centred on the origin, we can permute the axes,
and choose an orientation for each one, arbitrarily. [3]
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If the matrix A is only positive, i.e. xTAx � 0, then the group becomes in�nite,
but still �ts in Euclidean space as the symmetry group of a tessellation. The classi-
�cation is quite similar, except that the groups from polytopes that don’t tessellate
space disappear: the old diagrams are usually extended by a node, giving a tiling of
space by the original polytope (and possibly some others). Ĩ1 is the symmetry group
of an apeirogon, an in�nite-sided regular polygon: a line divided into equal-length
segments.

Ãn B̃n 4 C̃n 44

D̃n Ẽ6 Ẽ7

Ẽ8 F̃4 4 G̃2 6

Ĩ1 1

If xTAx can be negative, the group won’t �t in Euclidean space. For small cases,
it can �t in hyperbolic space; but as the o(i , j) rise higher and higher (and possibly
to in�nity), the vertices and the fundamental region break through in�nity and go
beyond it. In general, Coxeter groups can be classi�ed based on the number of pos-
itive, zero, and negative eigenvalues A has. A hyperbolic Coxeter group naturally
�ts in Lorentzian space, where one (timelike) basis vector has negative norm, and the
others (spacelike) have positive norm. [8]

Other applications

TheCoxeter-Dynkin diagram closely resembles the Schlä�i symbol for regular poly-
topes. The Schlä�i symbol of a p-gon is {p}, and then it is de�ned inductively: a
regular polyhedron where q p-gons surround each vertex has Schlä�i symbol {p, q},
a regular polychoron where r {p, q} surround each edge has Schlä�i symbol {p, q , r},
and so on. And indeed the cube has Schlä�i symbol {4,3}, the dodecahedron {5,3},
the 24-cell {3,4,3}, and so on.
This becomes clearer if we consider not the fundamental re�ections, but rather the

rotations that they multiply to. A cube has fourfold rotation symmetries in each face,
because its faces are squares; and threefold rotation symmetry around each vertex,
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because three squares meet at a corner. (It also has twofold rotation symmetry around
each edge.)
This relates to Wytho�’s construction. Consider the Coxeter diagram that is a

triangle with edges marked p, q, and r. Generating re�ections are in the sides of a
triangle with angles c/p, c/q, and c/r : that could be spherical, Euclidean, or hyper-
bolic.
Put a generating point in that triangle, and re�ect it across the mirrors and their

images to �ll all of space. By connecting the images appropriately, we obtain a series
of seven uniform tilings, like the Archimedean solids: all faces are regular polygons
(if the generator point is placed appropriately), and the symmetries of the tiling act
transitively on the vertices (the vertices are equivalent and thus surrounded alike).
This can naturally be generalised to larger polygons and higher dimensions. One

should nevertheless not imagine that the classi�cation is complete even for two-
dimensional tilings, because it is not: the Archimedean snub cube and snub dodeca-
hedron cannot be obtained this way, as they do not have the full symmetries of the
cube and dodecahedron. They are at least relatively tame examples of failure of the
Wytho� construction, as they can be obtained by taking alternate vertices of the even-
faced polyhedra in the last column below, which areWytho�an. A worse example
exists on the Euclidean plane: the tiling by alternating strips of triangles and squares
is uniform, but it cannot be obtained by Wytho�’s construction, even applying an
alternation procedure after the fact. Actually, the complete listing of uniform tilings
is not known except in the cases of S2, E2, and S3! [4]
The classi�cation of re�ection groups isn’t just important for geometry. One can

see it crop up again in Lie theory, catastrophe theory, and even even the symmetries
of tiny water droplets. (Yes, even the En have a connexion to our three-dimensional
world!) [5] We have only scratched the surface!
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Figure 2: A family portrait of theWytho�an Platonic and Archimedean solids. Each
triangle in the spherical tiling matches the colouring of the generating triangle. The
lines dividing the fundamental triangle are perpendiculars dropped from the gener-
ating point. The rows are respectively for (p, q , r) = (3, 3, 2) (tetrahedral), (4, 3, 2)
(cubic), and (5, 3, 2) (dodecahedral). Made using Je�reyWeeks’KaleidoTile software.
[7]
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AWar of Words and Numbers: Exploring Controversy in Maths
Lauren Aitken

Tick, cross, tick, cross. . . At �rst glance, there is no room for controversy in maths: how
can there be disagreement in the strict application of rigour?
Mathematics is commonly viewed as being objective, driven only by logic. This

idea is furthered in school, where maths is often taught with an emphasis on exam-
taking. Mark schemes are available, questions are designed with speci�c methods in
mind. Most people go through life without ever encountering a maths problem that
has not already been solved. Consequently, the possibility of di�ering interpretations
is left to the humanities: what place can controversy hold in mathematics?
Initially, the most famous mathematical controversies seem to con�rm this view,

with the crux of the problem lying in human quarrels, not the mathematics itself.
The (now largely accepted as independent) development of calculus by Newton and
Leibniz caused arguments in the mathematical community over which man had sci-
enti�c priority, eventually drawing the men themselves into accusing each other of
plagiarism. The fallout? The ‘largely pointless but heated controversy . . . caused
huge damage to English mathematicians’ for their refusal to engage with continen-
tal work (Stewart, 2012, p. 42). By and large, it was not the idea of in�nitesimal
calculus itself which raised hackles – although this did arise brie�y, in the dismis-
sive remarks of George Berkeley in The Analyst; or, A Discourse Addressed to an In�del
Mathematician (1734). Motivated largely by the belief that calculus contradicts Chris-
tian thought, Berkeley criticises calculus for deducing ‘true Propositions from false
Principles’ (§20).
The calculus controversy of the early 1700s has become notorious in the history

of mathematical disputes, taking on an almost mythological status. As we look further
back in time, stories of disagreements intensify rather dramatically. The Pythagore-
ans were a school ardent about the harmony of natural numbers and their ratios (the
rationals). When one of their members, Hippasus, discovered a proof of the ex-
istence of irrational numbers, he was allegedly thrown into the sea. Jump forward
2000 years, and the introduction of complex numbers was also regarded with a deep
level of scepticism. Descartes’ dismissal of them as ‘imaginary’ re�ects the suspi-
cions with which this �eld was considered for decades, with their existence treated as
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purely theoretical. With time, their usefulness became undisputed in analysis and,
now, complex numbers are found at the heart of quantum theory, with claims that
they are not merely a mathematical tool, but instead also hold real physical informa-
tion about quantum states (Scandolo, 2021).
But what is merely a mathematical tool and what is more than that? What math-

ematics is worthy of research? Are these ‘new’ numbers – whether they be negative,
irrational, or complex – invented, or discovered? As we begin to delve into the rea-
sons behind debate, underlying philosophies begin to appear. Questions about the
philosophical foundations of mathematics re-emerge each time a particularly sen-
sational development appears. A notable example is the reaction to Georg Cantor’s
treatment of in�nity at the end of the 19th century. At the time, mathematics largely
stuck to the �nite numbers. The notion of in�nity was seen as inconsistent and, im-
portantly, in a largely Christian Europe, also violated the belief that the in�nite was
a condition unique to God (Dauben, 1991). When Cantor started to develop trans-
�nite set theory, he faced intense opposition from mathematicians such as Leopold
Kronecker, who famously called Cantor a ‘corruptor of youth’. From Cantor’s per-
spective, however, if he could form an internally consistent theory, he was free to do
as he liked. He emphasised this point in his Grundlagen, stating that pure mathemat-
ics, unlike all other sciences is at its core a ‘free’ discipline. Advancement could not
be made, he believed, without mathematicians being allowed to take all reasoning to
logical and consistent conclusions, no matter their controversial status.
In a subject so focused on proof, perhaps it is no wonder that the nature of proof

itself has become a historical topic of debate. When the four-colour problem was
�rst posed in 1852, it was not expected to have the impact that it eventually had on
the mathematical world. However, the question of how many distinct colours are
su�cient to colour all possible maps, without adjacent regions being coloured alike,
gained in popularity as the answer remained elusive for over a century. Eventually,
Appel and Haken proved that four colours su�ce, by narrowing the number of fun-
damental cases and checking each one individually. The catch? There were 1,834
cases and each was checked using a computer, taking over 1,000 hours in total. Con-
troversy developed: is a proof that relies on computation beyond reasonable human
capacity a ‘true’ mathematical proof? Tymoczko (1979) claimed that while the four-
colour theorem could conceivably be said to have been proven mathematically (the
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proof was eventually accepted after several rounds of �nding and correcting the al-
gorithm’s errors), the method used required a philosophical shift to the concept of
‘proof’, arguing that ‘experimental methods’, akin to that of the natural sciences, had
been introduced.
Ultimately, controversy does occur among mathematicians. Historically, these

controversies often re�ect ideological beliefs aboutmathematics. From the Pythagore-
ans’ alleged dispatch of Hippasus, Berkeley’s pamphlet, or Kronecker’s disapproval, it
is now clear that maths does not exist within a logical bubble, but instead in a divided
and belief-driven world. How its development is viewed varies wildly also: compare
Cantor’s distinction between maths and the natural sciences, to Tymoczko’s claims
of the emergence of empiricism in the �eld.
Benford’s law of controversy, from his novel Timescape, comes to mind: ‘passion

is inversely proportional to the amount of real information available’. Mathemati-
cal controversies often die down as the �eld or theorem develops. Many historical
controversies now have a ‘correct’ answer, with one interpretation becoming stan-
dard: not many contemporary mathematicians will sco� at the existence of irrational
numbers, even if their �eld does not directly require them. Moreover, di�erent areas
of maths can coexist while using di�erent foundational philosophies: for example,
proofs are published with and without assuming the axiom of choice. As time goes
on, new mathematical controversies will inevitably arise and, undoubtedly, many too
will be laid to rest in the history books.
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Data and the stories it tells
Maria Tas, că

This summer I had the privilege to be part of the van der Schaar lab, being supervised
by prof. Mihaela van der Schaar and funded by the Cambridge Open Mathematics
Internships Programme, whom I must thank for their support. The project I took
upon focused on developing new interpretability methods in Machine Learning, an
incredibly exciting research area that focuses on deciphering a black box model. And
thus started the �rst chapter of my story: Interpretability.
Most of the time, a Machine Learning model will output a prediction for a given

data instance, without explaining why that decision was taken: this is what we call a
black box model. Intricate and mysterious, black box models are used in high-stake
�elds, such as healthcare, the criminal justice system or the �nancial lending system.
Thus, it’s important for the stakeholders to understand how the model works in order
to trust and use it.
One may ask why we don’t create an explicit model from the beginning so that we

know exactly how everything works and how each decision is taken. These models
are called white box models and it turns out that they are signi�cantly less accurate than
black box models, which is why we’re interested in investigating how the latter work.
Moreover, another reason interpretability is such an exciting area of research is

that it has the power to unravel the inner workings of the model, which could lead
to ground-breaking discoveries in various �elds, such as pharmacology or medicine.
Imagine a machine that takes the inputs and the outputs of an equation and then
comes up with the equation itself.
When reading a paper that proposed a method to interpret the model’s prediction

using examples from a data set chosen by the user1, it occurred to me that the quality
of the data is extremely important: a Machine Learning model is only as accurate as
its training data. This is how the second chapter starts: Data Centric AI.
While model centric AI rests on the assumption that the data is �xed and only

the model can be improved, Data Centric AI focuses on improving the quality of the
data itself. Some approaches consist in understanding which instances are forgotten

1https://arxiv.org/pdf/211�.15355.pdf
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Figure 1: A dataset used in the study of the COVID-19 virus

during the training process2, and which are uncertain or inconsistent3, in order to
eliminate unreliable points from the data set and reduce processing times. However,
if the data were fair and unbiased from the outset, would such issues arise? The third
chapter commences: Bias in Data.
A dataset is biased when it doesn’t accurately represent the situation to be stud-

ied. This discrepancy often arises from the human relationships at play between the
people involved. Despite being �lled with numbers and cryptic notation, datasets tell
stories of people and how they interact and see each other, from a doctor treating
their patient to an employer trying to �nd their next employee. The datasets I stud-
ied are usually tabular and they contain information that the collector of the data (e.g.
the healthcare system) deems necessary for the purpose of the study (e.g. age, gen-
der, weight, blood pressure), but nothing about the agent that acts on the data (e.g.
the doctor). Surely, we can agree that certain groups of people are more impacted by
bias than others, either positively (someone is favoured unfairly) or negatively (some-
one is opposed unfairly). Maybe it is time to think about the source of the bias by
establishing relationships between groups of people, characterised by some speci�c
features. How can bias be addressed if the root of problem seems to be everyone,
and thus no one in particular? How can we �nd the source of bias if all spreadsheets
look like this?4

2https://arxiv.org/pdf/1812.�5159.pdf
3https://arxiv.org/pdf/22�2.�8836.pdf
4https://www.researchgate.net/figure/Samp�e-hea�thcare-dataset-Singh-2�2�_fig3_

346868725
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This is why I’m proposing another way to look at and gather data sets, that consid-
ers the features of not only the ones who are impacted by the actions of the decision
makers, but the features of the decision makers themselves, as well as the features
of the environment where they interact. I call my method The 5Ws of Machine
Learning: Who, What, Where, When and by Whom? I consider the data set to be
complete if it contains the features (that might relate to bias) of both the assessed and
the assessors e.g. race, gender, socio economic status (Who? By Whom?), enough
information for the scope of the study (What?), the place and time of the interaction
(Where? When?). To prove why this is necessary, I analysed a popular data set in
ML literature: Heart Failure Predictions5 and here are my conclusions:
There is no record of features that might be related to potential bias, making it

much harder to trace. Furthermore, over a long period of time conditions which
could a�ect the severity and the outcomes of the cases might change (e.g. environ-
mental), thus making earlier records less relevant, which is why recording the times
a patient is treated is important. Additionally, writing down the hospital in which the
patient was treated allows for the tracking of good and bad practices.
If we were to collect data in such a way, not only could we have a clearer view of the

bias present in data sets and thus increase the accuracy of the models, but we could
quantify both positive and negative bias, which is the aim of my report. There are
many ML models that work towards eliminating bias in data sets6, as well as other
ways of collecting data in a healthier way, reasons why I am optimistic about the
future of data science and machine learning.

5https://www.kagg�e.com/datasets/fedesoriano/heart-fai�ure-prediction
6https://proceedings.neurips.cc/paper/2�16/fi�e/a486cd�7e4ac3d27�571622f4f316ec5-Paper.

pdf
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Asymptotic hopes
Felix Stokes

This poem takes inspiration from Catullus’ poem 51.

it seems to me that he inhabits four-space,
or really, if I squint, it’s even more space:
he’s x and you’re one over him, while I
am struggling, i’m zero = y

which means that I am here. eternally
reaching at you and your proximity
but asymptotic hopes have never met
you. it’s only me within my set.

and Zeno, he was right: Achilles’ heel
approaches - never meets - I’ll never feel
the touch of all your curves upon my skin.
instead, I sit and stoke the �ames within.
the only thing that’s left and positive
is d(heartbeat)dt , I’m closeted

by night, my tongue is looping, möbius,
I’m inside out and not, my �esh erupts
and folds. I am the shadow of a klein
bottle, my temperature’s looping like sines;
I try to �nd my roots, I factorise,
but I must not have factored in your eyes

for suddenly you are transcendental:
I have no roots. I spiral out. your pull
does nothing. e’s got you into this mess:
you’re exponential, man. take logs. I guess
these are my logs. I add. I multiply.

let him become your ex, and I’ll be why.
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Sorry, I don’t do maths
Siddiq Islam

They’d try and convince me with "Go on, just try it"s,
With "Don’t be a wuss"s and "It’s �ne, no one’s looking"s.
I’d always tell them, "Sorry, I don’t do maths."

They’d crowd round on soggy park benches,
Applying Green’s theorem to a circle.
I kept my path well clear of them.

They’d o�er at parties,
They’d roll up papers on number theory.
"It’s all natural," they’d assure me.
"Sorry, I don’t do maths."

A friend tried to get me into linear maps:
Injections, surjections and bijections,
When I’d never even touched adjoint.

People got addicted.
I saw a man doing lines of complex analysis in a public bathroom.
I only caught a glimpse but his "i"s were read.

And now they’re all lost in thought,
Wasting their minds pondering imaginary numbers.
I don’t do maths, and I never will.
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Proof by contradiction
Aleksandra Bozovic

To say it is so, truth lent to a lie,
This treacherous gift, given free of guilt,
I’ll use to track you down, and, as a spy,
To break into the world that you have built.

That strange, collapsing world I shall explore,
The inconceivable I shall understand,
These wondrous dreams never seen before,
That reason’s piercing gaze cannot withstand. . .

A rotten tree you are, that bears bad fruit.
Now I shall make your falsity laid bare.
You try to run from my frenzied pursuit,
But all paths lead you right into my snare.

If I a�rmed, it was but to deny,
For what is void of truth must surely die.
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Write for the Invariant!
Write for the Oxford mathematics magazine! We are
looking for all sorts of pieces for our next issue:

articles, essays, poems, illustrations, as well as puzzles
and games. If you’re interested in writing for the

Invariant, have suggestions or want to write a letter to
the editor, email us at editor@invariants.org.uk.


