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SECOND PUBLIC EXAMINATION
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Linear Algebra

TRINITY TERM 2016
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• Answers to the best two questions will count towards the total mark for the paper.

• All questions are worth 25 marks.

• You may hand in attempts to any number of questions.

• Begin the answer to each question in a new answer booklet.

• Hand in your answers in numerical order.

• Indicate on the front sheet the numbers of the questions attempted.

• A booklet with the front cover sheet completed must be handed in even if no question has been
attempted.

• Cross out all rough working and any working you do not want to be marked. If you have used
separate answer booklets for rough work please cross through the front of each such answer
booklet and attach these answer booklets at the back of your work.

Do not turn this page until you are told that you may do so
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1. (a) [5 marks] Suppose that V is a finite-dimensional vector space over a field F, and that
T : V → V is a linear transformation.

(i) Prove that there exists a non-zero polynomial p(x) such that p(T ) = 0.

(ii) Prove that there exists a unique monic polynomialmT (x) such that for all polynomials
q(x), q(T ) = 0 if and only if mT (x) divides q(x).

(iii) State a criterion for diagonalisability of T in terms of mT (x).

(b) [10 marks] Suppose that V is a finite-dimensional vector space over a field F and that
T : V → V is a linear transformation.

(i) Prove that for all i > 0, kerT i is a subspace of kerT i+1.
Let B1 ⊆ B2 ⊆ · · · be sets such that Bi is a basis for kerT i.

(ii) Prove that if for some k, T k = 0, then T is upper-triangularisable. Deduce that for
any λ ∈ F, if (T − λI)k = 0, then T is upper-triangularisable.

(iii) Show that T is upper-triangularisable if and only if mT (x) is a product of linear
factors.

[You may use the Primary Decomposition Theorem.]

(c) [10 marks] For which values of α and β is the matrix

A =

 2 1 −1
α− 1 α− β β
α− 1 α− β − 1 β + 1


diagonalisable over R?

For which values of α and β is it upper-triangularisable over R?
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2. (a) [15 marks] Suppose that V is a finite-dimensional vector space over a field F. Suppose
that B = {e1, . . . , en} is a basis for V .

(i) Define the dual space V ′ of V and the dual basis B′ = {e′1, . . . , e′n}. Prove that B′ is
indeed a basis for V ′.

(ii) If T : V → V is a linear transformation, define the dual map T ′. State and prove
a relationship between the matrices of T and T ′ with respect to the bases given.
How are the characteristic polynomials of T and T ′ related? How are the minimum
polynomials related? Justify your answers briefly.

(iii) If U is a subspace of V , define the annihilator U◦ of U .

(iv) Define a natural isomorphism Φ between V and its double dual V ′′. [You do not need
to give proofs that Φ is well-defined or that it is an isomorphism.] Prove that if U is
a subspace of V , then Φ|U is a bijection between U and U◦◦.

(b) [10 marks] Let V be the vector space of all functions f : N → R such that for all but
finitely many n, f(n) = 0, equipped with operations of vector addition and scalar multi-
plication defined so that (f + g)(n) = f(n) + g(n) and (αf)(n) = αf(n) for all f, g ∈ V ,
n ∈ N, and α ∈ R.

Define W to be the vector space of all functions from N to R, with similarly defined
operations of vector addition and scalar multiplication.

If f ∈W , define θf : V → R so that

θf (g) =

∞∑
n=0

f(n)g(n).

Prove that the map f 7→ θf is an isomorphism between W and V ′.

Prove that the map Φ : V → V ′′ defined as in part (a) is not a surjection.

[You may assume that if U is a vector space over R, L is a linearly independent subset of
U , and h : L→ R, then there exists a linear functional k : U → R such that k|L = h.]
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3. Let V be a finite-dimensional inner-product space over C.

(a) [6 marks] Suppose that T : V → V is a linear transformation. Define the adjoint map
T ∗. (You do not need to prove that it exists or is unique.)

Suppose that T has the property that T ∗ = αT for some α ∈ C. Prove that T is
diagonalisable.

(b) [9 marks] We say that T is self-adjoint if T ∗ = T , and that it is skew-adjoint if T ∗ = −T .

Observe that if S and T are self-adjoint, then so are S + T , S − T , and βT , for any real
number β.

Recall that if T : V → V is any linear transformation, then T + T ∗ is self-adjoint.

(i) Prove that any linear transformation T can be written as the sum of a self-adjoint
and a skew-adjoint linear transformation.
Is it the case that a sum of diagonalisable linear transformations is diagonalisable?
Give a proof or a counterexample.

(ii) What are the possible eigenvalues of a self-adjoint linear transformation? Justify your
answer carefully.

(iii) Characterise the possible Jordan Normal Forms of linear transformations T : V → V
such that T 2 is self-adjoint.

(c) [10 marks] Suppose now that T : V → V is a linear transformation, and that TT ∗ = T ∗T .

(i) Prove that if v is an eigenvector of T ∗, then 〈v〉⊥ is T -invariant.

(ii) Prove that if Vλ = ker(T − λI), and v ∈ Vλ, then T ∗v ∈ Vλ also.

(iii) Hence prove that there exists an orthogonal basis for V consisting of vectors which
are eigenvectors for both T and T ∗.

(iv) Does it follow that T is self-adjoint? Give a proof or a counterexample.
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