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Fellow Mathematicians,
Hello and welcome to the new Hilary term. It has
been 80 years since the Invariants was set up by a
group of dedicated and brilliant Maths students aim-
ing to promote the realm of the Queen of all Sciences
not covered by the degree curriculum. Ever since,
the Invariants have been there for the Oxford stu-
dents to inspire them by encouraging learned discus-
sions with distinguished Mathematicians invited to
give dedicated talks for the society’s members. To
honour this tradition, the Society is proud to invite
you all, fellow Invariants, to a Anniversary Dinner to
be held at Balliol College on 19 February. Updates
on this event will be showing up on the Society’s web-
site.
This Hilary Term issue of the Invariant sheds light on
the—often underappreciated—usefulness of the di-
vergent series which, if handled with care, can be an
interesting and extension of the discussion of their
convergent counterparts. We are also happy to in-
clude an article written by our colleagues from the
Physics Department on the Noether’s Theorem and
its implications—a wonderfully mathematical way of
looking at conservation laws in physical sciences. As
a somewhat lighter respite from mathematically rig-
orous texts, you may also enjoy the “Mathematical
Foundation of Classical Ballet” which takes an in-
teresting look at the rigidly structured art of ballet
dancing.
Wishing you all a gratifyingly challenging and suc-
cessful term,
Lawrence Kurowski
Magazine Editor
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Divergent Series

Benjamin Jarvis

The Invention of the Devil?

Consider the following fallacious “proof” that Grandi’s series 1−1 + 1−1 + . . . is equal
to 1

2 :
Set

S1 = 1− 1 + 1− 1 + . . .

Then,

S1 = 1− 1 + 1− 1 + . . .

= 1− (1− 1 + 1− 1 + . . . )

= 1− S1

Thus, 2S1 = 1, and hence S1 = 1
2 .

1− 1 + 1− 1 + · · · = 1

2
(1)

Using this we can now derive the even more bizarre equation 1− 2 + 3− 4 + · · · = 1
4 :

Set

S2 = 1− 2 + 3− 4 + . . .

Then,

2S2 = 1− 2 + 3− 4 + . . .

+ 1− 2 + 3− . . .
= 1− 1 + 1− 1 + . . .

= S1 = 1
2

Thus, 2S1 = 1
2 , and hence S2 = 1

4 .

1− 2 + 3− 4 + · · · = 1

4
(2)

There is already clearly something wrong here, but it gets worse. Using much the
same logic we can derive a truly fatal result:
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Set

t = 1 + 1 + 1 + 1 . . .

= 1 + (1 + 1 + 1 . . . )

= 1 + t

(3)

Hence, 0 = 1.
What’s gone wrong here? I suspect the answer will be immediately obvious to anyone

who has taken a basic first course in Real Analysis: the series considered here are
divergent.

Recall the definition of convergence for an infinite series
∑
an, due to Cauchy:∑∞

n=0 an converges to a limit L if for all ε > 0 there exists N(ε) > 0 such that for
all n ≥ N(ε): |sn − L| < ε, where sn = a0 + · · ·+ an is the nth partial sum of the series.
We then say that L is the sum of the series

∑
an.

Basic analysis tells us that convergent series can be manipulated much like finite
sums, so that the proofs given above would be valid if these series were convergent.
However, it is immediately clear that the series considered do not have sums under
Cauchy’s definition—they are divergent. This, then, is the logical flaw in the above
proofs—they begin by assuming that each series converges to a sum. Given that the
series are divergent this is false, and it is therefore no surprise that we arrive at absurd
results.

In the light of the above it is no wonder that Abel famously declared that “divergent
series are the invention of the devil, and it is shameful to base on them any demonstration
whatsoever.” This is what might be called the ‘Abelian’ view of divergent series, and
there was a time when it was commonplace amongst mathematicians. I suspect it is also
common amongst undergraduates who have recently encountered the theory of infinite
series for the first time. It is however, a view that no trained mathematician nowadays
would accept; over the course of the last century it has been demonstrated time and
time again that there are in fact sensible ways of assigning values—generalized sums—
to divergent series; ways which are not only logically consistent, but also highly useful.
Under these definitions, the equations (1) and (2) are in a sense correct, as we shall see.

The emergence of a theory of divergent series happened, broadly speaking, in three
stages:

Firstly, in the period before analysis was placed on a rigorous footing, many math-
ematicians—most notably Euler, who seems to have held the philosophical viewpoint
that each series could be associated with a unique ‘generalized sum’—heuristically ma-
nipulated divergent series to arrive at results that appeared to be correct.

Next, in the period after Cauchy and Weierstrass had laid the foundations for modern
analysis, a small number of dissenters from the ‘Abelian’ viewpoint—including Cesàro
and Borel—experimented with alternative ways of assigning values to infinite series
which extended Cauchy’s concept of convergence. Many of these ways proved to have
significant applications throughout mathematics.

Finally, towards the end of the 19th and beginning of the 20th centuries, the develop-
ment of Abelian and Tauberian theory—due to, amongst others, Frobenius, Tauber, and,
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perhaps most importantly, the Hardy–Littlewood partnership—created a unified theory
of divergent series which could no longer be ignored by the mathematical mainstream.

In this brief introduction I plan to devote a section each to a ‘snapshot’ of each of these
stages. My hope is that doing so will give an indication of how and why mathematicians
came to view divergent series as legitimate mathematical objects, and will convince the
reader that this is both a fascinating and important area of study.

Euler’s example

For a first glimpse of the power of divergent series, let’s look at an example which was
known to Euler:
It is well known that, for complex x:

1 + x+ x2 + · · · = 1

1− x (|x| < 1) (4)

and the sum diverges for |x| ≥ 1. The right-hand side of this equation, however, makes
sense for all complex x 6= 1. Abandoning all pretence of mathematical rigour, we might
formally substitute x in (4) for the complex number eθi = cos θ+ i sin θ (for 0 < θ < 2π,
so eθi 6= 1), which has magnitude 1, to obtain:

1 + eθi + e2θi + e3θi + . . . =
1

1− eθi

=
1

2
+

1

2
i cot

(
1

2
θ

)
(0 < θ < 2π)

and, on taking real parts:

cos θ + cos 2θ + cos 3θ + · · · = −1

2
(0 < θ < 2π) (5)

The series on the left-hand side of this equation is, unsurprisingly, divergent, so that
the equation (5) is—according to the ‘Abelian’ view of divergent series—meaningless.
Something peculiar happens, however, when we integrate this equation, term-by-term,
between 0 and a new variable φ; we obtain:

sinφ+
1

2
sin 2φ+

1

3
sin 3φ+ · · · = −1

2
φ+K (0 < φ < 2π)

where K is a constant that we can evaluate to π
2 by setting φ = π, giving us:

sinφ+
1

2
sin 2φ+

1

3
sin 3φ+ · · · = π − φ

2
(0 < φ < 2π) (6)

The curious thing about this equation is that it is true: the series on the left-hand
side is convergent to the expression on the right. We have thus manipulated a divergent
series in such a way as to derive a correct result about a convergent series. (As an aside,
the equation (6) can be used to obtain a remarkably slick solution to the Basel problem
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see [1] for details). At the end of this article, we shall be in a position to explain how
this can be turned into a rigorous proof; for now, we can do much more with the series
(5).

Consider, for complex s, the series

∞∑

n=1

1

ns
= 1 +

1

2s
+

1

3s
+

1

4s
+ . . .

This converges in the region Re(s) > 1 and diverges everywhere else. In addition, in
its region of convergence it defines an analytic function; we can extend this function
uniquely to a function ζ(x)—the Riemann Zeta function—which is defined and analytic
everywhere in the complex plane except at s = 1, where it has a simple pole.

Due in part to a strong connection between its zeros and the distribution of prime
numbers, established by Riemann in a seminal 1859 paper, the Zeta function is of unpar-
alleled importance to modern analytic number theory. Despite its name it was actually
first studied over 100 years before Riemann by Euler, who used arguments involving
divergent series to make a number of remarkable conjectures about it, most notably
conjecturing the functional equation

ζ(1− s) = 2(2π)−s cos

(
1

2
sπ

)
Γ(s)ζ(s)

which was eventually proven by Riemann.

A summary of how Euler did this can be found in [2]; to give a flavour of his methods
we shall give a heuristic demonstration of the existence of its trivial zeros:

Recall that we have

ζ(s) =
∞∑

n=1

1

ns
for Re s > 1 (7)

Suppose that we wish to evaluate the Zeta function at negative even integers. The series
(7) does not converge for s = −2k, but if we naively substitute this into the right-hand
side we obtain the series

1 + 22k + 32k + 42k + . . . (8)

Now, if we were to adopt Euler’s philosophical viewpoint that each divergent series
can be associated with a unique number—a generalized sum—and if we could find this
number for the series (8), we might well expect that this number should be the value of
ζ(−2k).

Let’s look again at the series (5); the method that we used to derive it suggests that
it should only be ‘true’—whatever that means—for 0 < θ < 2π.
If we take yet another logical leap of faith, however, and set to be the limit 0, we arrive
at the bizarre equation:

1 + 1 + 1 + 1 + · · · = −1

2
(9)
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We have already seen that assigning a value to this series is particularly fatal, but it turns
out that the corresponding value of the Zeta function, ζ(0), actually is −1

2 . Already,
this seems promising. Now, differentiating the series (5) 2k times, we obtain

cos θ + 22k cos 2θ + 33k cos 3θ + · · · = 0

And, substituting θ = 0:

1 + 22k + 32k + 42k + · · · = 0

This leads us to conjecture that the Zeta function is zero at all even negative integers,
and again this turns out to be true1

This example already strongly suggests that the Abelian view of divergent series is
incomplete. In order to make sense of the above we shall have to adopt Euler’s viewpoint
that the sums of divergent series considered above are in some sense ‘true’. To reconcile
this with our modern rigorous approach we must extend our concept of the sum of an
infinite series to include the divergent case.

Summation Methods

In order to make progress we first have to define what we mean by the generalized sum of
a divergent series. It turns out that there are a number of different possible summation
methods which allow us to do this. A summation method S is a function from some set
of series to the complex numbers, subject to some further conditions. For convenience
(and to emphasise the connection with regular summation) we shall supress function
notation and write

∑
an = L(S) or a0 + a1 + a2 + · · · = L(S) for ‘S maps the series∑

an to L’. We then say that the series is ‘S-summable’ with L its S-sum.

The axioms for a summation method S can now be stated as:

i.) Linearity: if
∑
an and

∑
bn are S-summable and λ is a complex number, then∑

(an + λbn) is S-summable and
∑

(an + λbn) =
∑
an + λ

∑
bn

ii.) Regularity: if
∑
an is a convergent series with sum L then

∑
an is S-summable

with S-sum L.

If, in addition, S satisfies:

iii.) Stability: a series a0 + a1 + a2 + . . . is S-summable if and only if a1 + a2 + . . . is
S-summable and then a0 + (a1 + a2 + . . . ) = a0 + a1 + a2 + . . . (S)

then we way that S is a stable summation method.

These are all properties that are satisfied by regular summation, which allow us to
manipulate S-sums much like convergent series; note that we do not require commuta-
tivity (i.e. permuting the terms of a series without altering the result)—it is a basic fact

1These are known as the trivial zeros of ζ(s); they are known to be the only zeros outside the critical
strip 0 < Re(s) < 1, and conjectured to be the only zeros off the line Re(s) = 1

2
.
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that this does not hold for convergent series, so we certainly shouldn’t expect it to hold
for divergent series.

To begin to see the power of these axioms, note that we can easily convert the
fallacious ‘proofs’ (1) and (2) into valid proofs that any generalized stable summation
method which can sum these series must sum them to these values, and (3) into a proof
that no stable method can sum 1 + 1 + 1 + . . . (this doesn’t conflict with (9) as the
summation method implicitly considered there is not stable).

It is worth noting briefly at this point that the axioms for a stable summation method
imply that we can insert a finite number of zeros into a series without altering its sum.
This is known as finite interpolation. As we shall see, we certainly do not have infinite
interpolation in general.

We shall now describe two of the most important summation methods:

Cesàro Summation

Our first method of assigning a sum to a divergent series is due to the Italian mathe-
matician Ernesto Cesaro. We say that a series

∑
an is Cesaro-summable to L (written∑

an = L(C)) if:

tn =
1

n+ 1

n∑

k=0

Sk → L (where Sk = a0 + · · ·+ ak)

That is, the Cesaro-sum of a series is the limit of the averages of consecutive partial
sums (known as the Cesaro-means) if this limit exists.

It is a basic exercise to show that this method is linear, regular and stable.

For a basic example of the use of this method, let’s look again at Grandi’s series.
Recall that we know that if there is a stable summation method that sums this series
then it must sum it to 1

2 . This does not imply that such a method exists, but it is easy
to see that Cesaro-summation works:

an =

{
+1 n even

−1 n odd

So that

Sn =

{
1 n even

0 n odd

And
n∑

k=0

Sk =

{
n
2 + 1 n even
n+1
2 n odd

Thus

tn =

{
1
2

(
1 + 1

n+1

)
n even

1
2 n odd
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This sequence clearly approaches 1
2 , so that we have obtained:

1− 1 + 1− 1 + · · · = 1

2
(C)

We have thus shown that there is indeed a sensible way of associating the number
1
2 with Grandi’s series; the argument used in the introduction wasn’t nonsense after all!
(The reader might like to verify, however, that 1−2+3−4+ . . . is not Cesaro-summable;
we shall need a stronger summation method for this series.)

We arrive at a serious difference between Cesàroand regular summation when we
consider versions of Grandi’s series interpolated with infinitely many zeros—so-called
lacunary versions of the series. For example, consider the series:

1 + 0− 1 + 1 + 0− 1 + · · · =
∞∑

n=0

an

where an =





1 n ≡ 0 mod 3

0 n ≡ 1 mod 3

−1 n ≡ 2 mod 3

Then

Sn =





1 n ≡ 0 mod 3

1 n ≡ 1 mod 3

0 n ≡ 2 mod 3

So that

n∑

k=0

Sk =





2
3

(
n+ 2

3

)
n ≡ 0 mod 3

2
3 (n+ 2) n ≡ 1 mod 3
2
3 n ≡ 2 mod 3

Hence

tn =





2
3

(
1 + 1

2(n+1)

)
n ≡ 0 mod 3

2
3

(
1 + 1

n+1

)
n ≡ 1 mod 3

2
3 n ≡ 2 mod 3

But this series clearly converges to 2
3 , so that:

1 + 0− 1 + 1 + 0− 1 + · · · = 2

3
(C)

Hence, in stark contrast with regular summation, interpolating an infinite number of
zeros into a series can alter its Cesaro-sum. Even worse, consider Hardy’s series:

1− 1 + 0 + 1 + 0 + 0 + 0− 1 + · · · =
∞∑

n=1

an
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where an =

{
(−1)k if n = 2k

0 otherwise

This series is in fact not Cesaro-summable; this can be verified directly or deduced as a
consequence of a remarkable Tauberian theorem due to Hardy and Littlewood known as
the High-Indices theorem. Roughly, this tells us that even in contexts more general
than Cesàrosummation this problem always arises. A summable series can always be
made into a non-summable series by interpolating so that the non-zero terms are spread
sufficiently thinly. This is a first hint of the deep fact that we have no hope of ever
‘taming’ all series with a single summation method.

Why is Cesàrosummation a useful concept? In short, because it gives the next best
thing after convergence: in addition to being linear, regular and stable, the Cesaro-sum
can easily be computed to any degree of accuracy required, and it interacts well with
the multiplication of series (better, in fact, than regular summation does) as well as
with the operations of calculus. We can therefore use Cesàrosummation to manipulate a
much larger class of series than the convergent series, using almost all of the properties
that make convergence such a powerful notion. For example, it can be shown that the
equation (5) is in fact true under the Cesàrosum; this hints at how we could make
rigorous the heuristic derivations we based on this equation.

A famous application of Cesaro’s method comes from the theory of Fourier series. In
this field we are concerned with representing a given continuous periodic function f(θ)
(presumed here to have period 2π) by a trigonometric series of the form:

a0
2

+

∞∑

n=1

(an cosnθ + bn sinnθ) (10)

with coefficients:

an =
1

π

∫ π

−π
f(θ) cos(nθ)dθ

bn =
1

π

∫ π

−π
f(θ) sin(nθ)dθ

This is known as the Fourier series for f(θ), and very often it converges to f(θ). We
would like to know for which functions the series (10) converges (preferably uniformly)
to f(θ), so that we have:

f(θ) =
a0
2

+
∞∑

n=1

(an cosnθ + bn sinnθ) (11)

In 1807, Fourier announced—to widespread disbelief—that for any continuous periodic
function f(θ) the series (11) converges. This is in fact not quite true, but something
almost as good is. For a remarkably large class of functions the Fourier series does
converge (for example the periodic functions with left- and right-hand derivatives every-
where), but in 1910 the Hungarian mathematician Lipot Fejer gave an explicit example
of a continuous function with a divergent Fourier series. He also, however, managed
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to prove the remarkable Fejer’s theorem, which states that for any continuous peri-
odic function f(θ) the Fourier series is Cesaro-summable to f(θ) and its Cesaro-means
converge uniformly. That is:

f(θ) =
a0
2

+

∞∑

n=1

(an cosnθ + bn sinnθ) (C)

This is useful for precisely the same reasons that a convergent Fourier series is: we can
easily calculate the Cesaro-means and hence use the Fourier series to calculate f(θ) to
any desired degree of accuracy; we can manipulate the series just as we would in the
convergent case; and (due to uniformity) we can integrate and differentiate term-by-
term. This illustrates a common theme in the theory of divergent series: if a generalized
summation method preserves sufficiently many properties of regular summation then it
often ends up being useful for the same reasons, whilst allowing us to work with a much
larger class of series.

Abel Summation

Our second method derives its name from Abel’s theorem, a classical theorem of
analysis which states:

i.) if f(x) is an analytic function on the interval (−1, 1) with power series expansion

f(x) =
∞∑

n=0

anx
n (|x| < 1)

and

ii.) if the series
∞∑

n=0

an (12)

converges to a limit L

then:

lim
x→−1

f(x) = L (13)

This result is often used to evaluate convergent series; for example, if we wish to evaluate
the alternating harmonic series

1− 1

2
+

1

3
− 1

4
+ . . .

we first note that this series converges by the alternating series test, and that

ln(1 + x) = x− 1

2
x+

1

3
x2 − 1

4
x3 + . . . (|x| < 1)
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by the Taylor expansion. We then use Abel’s theorem to deduce that

1− 1

2
+

1

3
− 1

4
+ · · · = lim

x→−1
ln(1 + x) = ln(2) (14)

The key insight that leads us to our next summation method is that even if the series
(12) doesn’t converge, the limit (13) may still exist; we may then say that this limit is
in some sense the ‘correct’ generalized sum of (12).

Formally, we say that a series
∑
an is Abel-summable to L (denoted

∑
an = L(A))

if the power series
∞∑

n=0

anx
n

converges for all |x| < 1 and

lim
x→−1

( ∞∑

n=0

anx
n

)
= L

It is now easy to prove that Abel summation is a stable summation method; linearity and
stability follow immediately from the algebra of limits, and the statement of regularity
is simply Abel’s theorem.

As an example of the use of this method, we can sum both versions of Grandi’s series
that we Cesaro-summed in the previous section; for example:

1− x+ x2 − x3 + · · · = 1

1− x (|x| < 1)

and

lim
x→−1

(
1

1 + x

)
=

1

2

so that

1− 1 + 1− 1 + · · · = 1

2
(A)

Further, we can now successfully sum the series 1− 2 + 3− 4 + . . . which we evaluated
heuristically to 1

4 in the introduction:

1− 2x+ 3x2 − 4x3 + . . . = (1− x+ x2 − x3 + . . . )2

=
1

(1 + x)2
(|x| < 1)

and

lim
x→−1

(
1

(1 + x)2

)
=

1

4

so that

1− 2 + 3− 4 + · · · = 1

4
(A)
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This already suggests that Abel summation is in a sense stronger than Cesàrosummation;
this is true, and will be made precise in the next section. It still has its limitations,
however. Just like Cesaro’s method it cannot sum series which diverge ‘too fast’; e.g.
it is immediate from the definition that if the sequence (an/2

n) doesn’t approach zero
then the series

∑
an is not Abel-summable. e.g. 1! + 2! + 3! + . . . is not Abel-summable.

We have already hinted at one of the reasons that this is a useful concept: our
derivation of the equation (14) implicitly proceeded by showing that the series is Abel-
summable to ln(2), before ‘shifting down’ to regular summability. This illustrates an-
other theme in the theory of divergent series: often the easiest way to study convergent
series is to shift up to some larger class of summable series where things are in some sense
easier, and then shift back down. (This is somewhat analogous to finding real solution
of a polynomial equation by finding all of the complex solutions (which we know exist)
and then showing which, if any, are real.)

Abelian and Tauberian theorems

The true value of the concept of generalized sums for divergent series only becomes
apparent when we stop thinking only of individual summation methods and start to
consider the ways that different methods relate to each other. This is made precise
through the use of Abelian and Tauberian theory, which make up the core of the study
of divergent series. Roughly speaking, an Abelian theorem tells us that some summation
method A is stronger than another method B, in that any B-summable series is also A-
summable, and to the same value. A Tauberian theorem is a partial converse to this,
telling us that given some ‘size condition’ on its terms, an A-summable series is B-
summable, again to the same sum.

The prototype for an Abelian theorem is Abel’s theorem, mentioned in the previous
section, which tells us that any convergent series is Abel-summable; another example is
the regularity result for Cesàrosums.

The first Abelian theorem relating two generalized summability methods to be dis-
covered was found by Frobenius in 1880, which tells us that Abel-summation is stronger
than Cesaro-summation.

Frobenius’ Theorem: If
∑
an is Cesaro-summable then it is also Abel-summable,

and to the same sum.
For an example of the power of this theorem, suppose that we wish to find

lim
x→−1

∞∑

n=0

(−1)nxn
2

To do this, we forget completely about the power series structure and simply consider
the corresponding divergent series:

1− 1 + 0 + 0 + 1 + 0 + 0 + 0 + 0− 1 + . . . (15)

=
∞∑

k=0

ak, where ak =

{
(−1)n if k = n2

0 otherwise
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This is of course another lacunary version of Grandi’s series, and it is fairly easy to
show that it is Cesaro-summable to 1

2 (consider the local maxima and minima of the
Cesaro-means, at odd and even perfect squares respectively, and show that both these
subsequences converge to 1

2). Now we can use Frobenius’ theorem to deduce that (15)
is Abel-summable to the same sum. Hence:

lim
x→−1

∞∑

n=0

(−1)nxn
2

=
1

2

We have thus managed to find a complicated limit without having to calculate a single
value of this power series!

The prototypical Tauberian theorem was discovered by Tauber in 1897:
Tauber’s Theorem: If

∑
an is Abel-summable to L and an = o

(
1
n

)
then

∑
an

converges to L.
Typically of a Tauberian theorem, this result is important for two dual reasons.

Firstly, in conjunction with Abel’s theorem (to which it gives a partial converse) it allows
us to work in the (much larger) class of Abel-summable series and then ‘shift down’ to
the class of convergent series to give valid results. Thus we can use the machinery of
power series of analytic functions (which is implicit in the concept of Abel-summability)
to study convergent series. Secondly, and perhaps more interestingly from a theoretical
perspective, the contrapositive of this theorem gives a limit on the applicability of this
summation method: it tells us that a divergent series whose nth term is o

(
1
n

)
(for

example
∑ 1

n lnn , n ≥ 2, which diverges by the Cauchy Condensation test) cannot be
Abel-summable. We already knew that a series could diverge too fast to be Abel-
summable; now we know that a series can also diverge too slowly. A similar restriction
exists for every useful notion of summability.

There are two more Tauberian theorems worth mentioning briefly here, both due to
the Hardy-Littlewood partnership. The first gives a condition for a Cesaro-summable
series to be convergent; the second gives a partial converse to Frobenius’ theorem:

Hardy’s theorem: If
∑
an is Cesaro-summable to L and an = O

(
1
n

)
then

∑
an

converges to L.
Hardy–Littlewood theorem: If

∑
an is Abel-summable to L and the partial sums

Sk of the series are bounded then
∑
an is Cesaro-summable to L.

To give a final example of the power of the theory of divergent series, we return to
the convergent series (6) discussed in the second section. Recall that we gave a heuristic
argument for this result based on unjustified manipulations of divergent series. Using
Tauberian theory we can now outline a scheme to turn this into a rigorous proof:

• Taking 0 < θ < 2π, consider the (convergent) geometric series:

1 + eθix+ e2θix2 + e3θix3 + · · · = 1

1− eθix (|x| < 1)

• Take the limit as x approaches 1 to obtain the Abel sum:

1 + eθi + e2θi + e3θi + · · · = 1

1− eθi =
1

2
+

1

2
i cot

(
1

2
θ

)
(A)
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• Take real parts to obtain:

cos θ + cos 2θ + cos 3θ + · · · = −1

2
(A)

• Now use the Hardy-Littlewood theorem to show that this is in fact a Cesàrosum:

cos θ + cos 2θ + cos 3θ + · · · = −1

2
(C)

• Show that the Cesàromeans of this series converge uniformly, and use this to justify
integrating the series term-by-term between 0 and a new variable φ, giving:

sinφ+
1

2
sin 2φ+

1

3
sin 3φ+ · · · = −1

2
φ+K(C) (0 < φ < 2π)

where K is constant.

• Use Hardy’s theorem to deduce that this series is in fact convergent, so that we
have:

sinφ+
1

2
sin 2φ+

1

3
sin 3φ+ · · · = −1

2
φ+K (0 < φ < 2π)

• Substitute φ = π to evaluate K to be π
2 , and so:

sinφ+
1

2
sin 2φ+

1

3
sin 3φ+ · · · = π − φ

2
(0 < φ < 2π)

Similar—though significantly more difficult—schemes can be devised to make our
arguments on the Zeta function rigorous.

Further Reading

[1] Divergent Series—G.H. Hardy: the classic book on the topic, written by one of the
pioneers of the theory, includes everything covered in this article and much more.

[2] Divergent Series: Why 1+2+3+ = −1/12—Bryden Cais: a brief article on the topic
which contains a summary of Euler’s heuristic derivation of the functional equation
for the Zeta function.

[3] Invitation to Classical Analysis—Peter Duren: this book contains an excellent short
section on Tauberian theory, which was the basis for my exposition of the subject.

[4] Summability of Alternating Gap Series—J.P. Keating and J.B. Reade: this short
article on one of the more interesting aspects of Tauberian theory concerns itself with
the summability of lacunary series, and contains an in-depth study of the fascinating
Hardy’s series and an introduction to the High-Indices theorem.

[5] Fourier Series—G.P. Tolstov: contains a chapter on the applications of generalized
summation methods to harmonic analysis.
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Noether’s Theorem: Symmetries, Invariance, and
Conservation Laws

Matthew Steggles and Matthew Elliot

The old guard at Göttingen should take some lessons from Miss Noether! She
seems to know her stuff - Albert Einstein

Introduction

In the world around us, we are increasingly bombarded with the need for conservation—
conservation of rainforests, conservation of endangered species, conservation of rare min-
erals and so on. The one key difference between these and the subject of this piece is
the necessity in all of these for human intervention. There is, however, another form of
conservation that enshrines itself above these human matters due to the total lack of
intervention needed for them to apply—physical conservation laws. Energy, momentum,
angular momentum; all commonly conserved quantities in elementary dynamics prob-
lems. Among others, the mere fact that these quantities do not change over time allows
an obscene amount of insight into the dynamics of the world.

We (the authors) are of course being facetious, but it does raise a question: how do
we know they are conserved? While the well known conservation laws can be shown
from Newton’s laws, doing it in this way would (as well as being tedious) lack a crucial
insight into the underlying mathematics as well as the subtlety of identifying when these
laws apply. The particular celebrity who’s work we will examine here is Emmy Noether,
German mathematician of the early twentieth century.

Noether was born in 1882 in the Bavarian city of Erlangen. The daughter of another
mathematician, Max Noether, she spent her childhood with the desire to teach English
and French, before turning to mathematics, studying at the university in her hometown.
Despite her obvious talent, Noether experienced a good deal of the endemic sexism of the
time—after completing her dissertation she worked in Erlangen without pay for seven
years. Following this, she was invited to Göttingen by Hilbert and Klein, but rejected by
the philosophical department, citing her sex as the reason. In spite of this, she proceeded
to lecture in Göttingen for four years, under Hilbert’s name, before finally being given
a professorship in 1919.

While Noether is lauded among mathematicians for her work in abstract algebra,
achieved later in life, we shall be concerning ourselves here with her earlier work on
invariants. First proved in 1915, and published in 1918, what is now known as Noether’s
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theorem elegantly links our conservation laws with invariance of the Lagrangian, a par-
ticular function of importance to physicists. Noether’s theorem stated in full is: Any
differentiable symmetry of the action has a corresponding conserved quantity. In order
to understand what this means we will briefly explore first the framework of Lagrangian
mechanics before demonstrating Noether’s theorem. We finish by discussing a compa-
rable phenomenon with deep physical insight—Ostrogradsky instability.

The Euler-Lagrange equation

First, define the action S =
∫ t2
t1
L(qi, q̇i, t)dt, where qi are the i generalised coordinates

of the system and L = T − U is the Lagrangian, equal to the kinetic energy of the
system take away the potential energy. A generalised coordinate can be any parameter
that describes the configuration of the system, such as distance along the x axis, or
the azimuth θ in a spherical system. For example, an experiment with a single simple
pendulum only needs one generalised coordinate to fully describe the motion of the
system—the angle θ between the pendulum and the vertical. Next, we assert Hamilton’s
principle of stationary action, stating that the action integral is stationary to first order.
With these in mind, we perturb q in the following manner (in one dimension, without
loss of generality):

q(t) 7→ q′(t) ≡ q(t) + εη(t) η(t1) = η(t2) = 0

Now differentiating the action with respect to ε and noting Hamilton’s principle, we find:

dS

dε
=

∫ t2

t1

dL(q′, q̇′, t)
dε

dt =

∫ t2

t1

(
η
∂L
∂q

+ η̇
∂L
∂q̇

)
dt = 0

Next, by integrating the second term of the integrand by parts:

dS

dε
=

∫ t2

t1

(
η
∂L
∂q
− η d

dt

∂L
∂q̇

)
dt+

[
η
∂L
∂q̇

]t2

t1

By remembering the boundary condition η(t1) = η(t2) = 0, then we may write:

∫ t2

t1

(
∂L
∂q
− d

dt

∂L
∂q̇

)
ηdt = 0 =⇒ ∂L

∂q
− d

dt

∂L
∂q̇

= 0

This is the Euler-Lagrange equation, and it is entirely equivalent to Newton’s laws,
only far more elegant and in many ways easier to use as no awkward consideration of
forces is necessary; the information is contained within the energies (The other solution
to making the integral zero; η = 0; merely refers to the coordinate q being totally
unperturbed on its path). The generalisation to i coordinates is trivial—there is simply
one Euler-Lagrange equation for each of the coordinate. For an intuitive reason as to
why the Lagrangian, a seemingly arbitrary function, is of such importance, read the
short casual paper “The Origin of the Lagrangian” by Matt Guthrie.
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Noether’s theorem

Each differentiable symmetry of the action has a corresponding con-
served quantity

Now, we arrive on the subject of Noether’s theorem, armed with the Euler-Lagrange
equation. Reading Noether’s theorem again, we see we are looking at differentiable
symmetries of the action, that is, transformations that leave δL = 0. Before we proceed
further, we must define a few more expressions. First, we define the conjugate momentum
of each coordinate, defined as

pi =
∂L
∂q̇i

If we use a cartesian coordinate system, and a potential that depends only on position,
then it is not so difficult to see that the conjugate momenta are simply the linear momenta
of the system. The next thing to define is the Hamiltonian, defined to be

H =
∑

i

piq̇i − L

The Hamiltonian has a strong relationship to the total energy of the system, as we will
see later. Now, as mentioned earlier, we shall be focusing on transformations leaving
δL = 0. Assuming we have such a transformation:

δL =
∑

i

∂L
∂qi

δqi +
∂L
∂q̇i

δq̇i =
∑

i

d

dt

∂L
∂q̇i︸ ︷︷ ︸

from E-L equation

δqi +
∂L
∂q̇i

δq̇i

=
∑

i

ṗiδqi + piδq̇i =
d

dt

∑

i

piδqi = 0

This tells us something very interesting indeed: provided we have some transformation
to qi that leaves L untouched, then it automatically tells us that the quantity

∑
i piδqi

does not vary with time, that is to say it is conserved! This proves Noether’s theorem.
Here are a few examples, to illustrate the power of this theorem:

Conservation of linear momentum

First, let us rewrite δqi as f(qi)δ ≡ fiδ, i.e. that q′i = qi+fiδ, and our conserved quantity
is
∑

i pifi. Now, in a cartesian coordinate system, we decide to translate x;

x 7→ x+ δ

We clearly see that in this case, f = 1, so our conserved quantity is simply px. If trans-
lation leaves the Lagrangian unchanged, then linear momentum is necessarily conserved!
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Conservation of angular momentum

Now, in a 3-dimensional system, apply an anticlockwise rotation about the z axis, and
allow this to preserve the Lagrangian as is:

x 7→ x cos δ − y sin δ = x− yδ , y 7→ y cos δ + x sin δ = y + xδ

In the limit that δ is small. We see now that fx = −y and fy = x, so our conserved
quantity is: ∑

i

pifi = xpy − ypx = (r× p)z

Which is the z component of angular momentum.

Conservation of energy

In order for a continuous transformation of the Lagrangian through time to be symmetric,
then the Lagrangian can not itself be a function of time.

dL
dt

=
∑

i

∂L
∂qi

q̇i +
∂L
∂q̇i

q̈i =
d

dt

∑

i

piq̇i

This substitutes directly into our definition of the Hamiltonian to give

d

dt

(∑

i

piq̇i − L
)

=
dH
dt

= 0

So the Hamiltonian is conserved through time. We identify the Hamiltonian as being
equivalent to the total energy of the system, and indeed it holds that in any system where
the Lagrangian does not depend explicitly on time, then energy is conserved. This is
fairly intuitive when you step back and think about it - the Lagrangian is a function of
the kinetic and potential energies, and one can reason that having either of these depend
on time implies that energy is being added or taken from the system, for example by a
motor.

However, the true physical significance of this has been (intentionally) glossed over
until now - remember that the Euler-Lagrange equation entirely contains Newton’s laws?
This is the same as saying it governs the equations of motion for the system. When we
say “the Lagrangian is unchanged under some transformation”, in the physical world
it means “when we do an experiment, the result is unchanged”. Combining this with
Noether’s theorem, this provides an incredibly powerful set of tools to determine what
in a given circumstance is or is not conserved; if an experiment can simply be moved to
a different place, and return the same results, then that and that alone is enough for us
to say that linear momentum is conserved. If we may rotate our apparatus and redo the
experiment and gain similar results, then angular momentum is conserved, and finally,
if we may simply go away and come back again later and do the same experiment, and
once again it gives us the same results as before, then energy too is conserved! This is
the beauty and immediate significance of Noether’s theorem.
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Ostrogradsky instability

Here, we will explore a consequence of having Lagrangians of higher orders, using Hamil-
tonian dynamics—a similar set of tools to Lagrangian dynamics. Ostrogradsky’s theorem
states that a non-degenerate Lagrangian dependent on time derivatives higher than first
order leads to a linearly unstable Hamiltonian. We begin by deriving Hamilton’s equa-
tions, from dH and dL. Notice that at the beginning we tacitly left off a ∂L

∂t dt term, as
we did not assert that L did not depend on t. It was not necessary then, and will not
be here either, so we shall again leave it off, purely to avoid clutter.

dL =
∑

i

(
∂L
∂qi

dqi +
∂L
∂q̇i

dq̇i

)
=
∑

i

(pidq̇i + ṗidqi))

Now we may substitute this into a similar expression for the Hamiltonian:

dH =
∑

i

(pidq̇i + q̇idpi)− dL =
∑

i

(q̇idpi − ṗidq)

Shuffling this expression around yields Hamilton’s equations, and comparing the above
two lines gives another important relation we shall use.

∂H
∂pi

= q̇i,
∂H
∂qi

= −ṗi = −∂L
∂qi

A final expression that we shall assert without proof is the Euler-Lagrange equation
generalised to second order.

∂L
∂qi
− d

dt

∂L
∂q̇i

+
d2

dt2
∂L
∂q̈i

= 0

Now, if you’re sitting comfortably, we may begin. Suppose we have a Lagrangian of
higher order (in one dimension, again without loss of generality), such that ∂L

∂q̈ depends

on q̈. This necessarily implies that our coordinate is governed by a 4th order differential
equation, meaning it is a function of time, and of the initial conditions [q0, q̇0, q̈0,

...
q0]. The

presence of 4 initial conditions implies that we can transform to a set of four canonical
coordinates. These play a similar role in Hamiltonian dynamics as the generalised coor-
dinates in Lagrangian mechanics. Where a Lagrangian is defined by the 2n coordinates
[qn, q̇n], in Hamiltonian dynamics we use instead the 2n coordinates [Qn, Pn]. We will
choose the coordinates to be Q1 = q, Q2 = q̇. Now, using Hamilton’s first equation:

∂H
∂P1

= Q̇1 = Q2 =⇒ H ∼ P1Q2

Similarly, for P2;
∂H
∂P2

= Q̇2 = q̈ =⇒ H ∼ P2q̈
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This enables to construct our Hamiltonian:

∂H
∂Q1

=
∂L
∂q

= − d

dt

∂L
∂q̈

+
d2

dt2
∂L
∂q̈

= − d

dt
P1 =⇒ P1 =

∂L
∂Q̇1

− d

dt

∂L
∂Q̈2

∂H
∂Q2

= P1 −
∂L
∂q̇

= − d

dt

∂L
∂q̈

= − d

dt
P2 =⇒ P2 =

∂L
∂Q̇2

We now have expressions for all our canonical coordinates. The crucial final step is to
notice now that P2 depends on q̈, so the term featuring it in the Hamiltonian is quadratic
with respect to P2–that is, it has a well defined extremum. However, the other term
does not satisfy this condition—it is linear in P1. This means it can have no well defined
minimum, which is a huge problem, considering we have identified the Hamiltonian as
being closely related to the energy. This linear relationship leads to instabilities in the
system, hence the name.

The implications of this are the real significance of the theorem. Instabilities tend
to lead to runaway solutions that, while potentially mathematically sound, do not make
good physical solutions. Hence, Ostrogradsky instability has been on several occasions
put forward as an attempt to explain why is it so rare to find any differential equations
of higher than second order in physics, within the classical limit.
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Mathematical Foundations of Classical Ballet

Nela Cicmil

Everyone knows that music and mathematics go well together. There are myriad
examples of this, from Albert Einstein who loved to play the violin to John F. Nash who
listened to Bach and Mozart while solving mathematical problems. It is no coincidence
that Marcus du Sautoy and Douglas Hofstadter named their brilliant books The Music
of the Primes and Gödel, Escher, Bach, respectively. I argue, however, that classical
ballet is in fact the truly mathematical art - more so than even mathematicians or
dancers might appreciate1. Ballet incorporates core principles from theoretical computer
science, linear algebra, and geometrical aesthetics. When a ballet performance combines
these mathematical fundamentals with graceful expression, evocative music, and sublime
visual arts, it brings mathematics to life. Let me explain what I mean.

Choreography as automata theory

Every classical ballet dance, such as the Dance of the Sugar Plum Fairy in the Nutcracker,
or the Black Swan solo in Swan Lake, is constructed by stringing together individual
components from the alphabet of ballet. These individual components are called the
steps of the dance. The process of inventing new dances is called choreography. When
ballet was invented in the Baroque court of King Louis XIV in 1665, in France, it was
decreed that every dance step in ballet should begin and end in one of the so-called
Positions of the Feet (Fig. 1)2.

These positions form the basis of a ‘ballet automaton’ as defined by automata theory.
In brief, a deterministic finite automaton (DFA) is an abstract machine that processes
input strings, either ‘accepting’ them or not. The automaton has a finite number of
states, a finite set of input symbols, and a transition function that specifies the next
state that the automaton will move to, given its current state and an input symbol. The
automaton also has a set of final or accepting states. An automaton therefore reads
in a string of input symbols, moving from state to state as it processes each symbol
in a manner determined by its transition function. If the automaton finds itself in an
accepting state after the final symbol, it ‘accepts’ the string, otherwise it does not. In
this way, automata can decide whether a given string is a member of some particular

1But see Wasilewska, K. (2012) Mathematics in the World of Dance. Bridges 2012: Mathematics,
Music, Art, Architecure, Culture, 453:456.

2As ballet developed, further positions of the feet were used, including a sixth position, a seventh
position, and various positions of standing on only one foot. However, the positions shown in Figure 1
remain the core positions.
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language. As strings can code for logical expressions, graphs, integers, and much more,
automata can decide answers to some interesting mathematical problems3.

Figure 1: The basic positions of the feet in ballet. In fact, there are two versions of
‘fourth position’, open (ouverte) and closed (croisé). Generally speaking, a ballet step
will begin and end in one of these positions.4

We observe that the process of choreographing a ballet dance is equivalent to finding
an input string that is accepted by the ballet automaton5. Each of the positions of the
feet are states of the automaton, and are also accepting states, since a dance can validly
end in any of these positions. We define an additional ‘impossible’ state, which is not an
accepting state, to represent a physically impossible choreographical request. Each ballet
step is a symbol in the ballet alphabet. The transition function maps these symbols to a
specific movement between the possible states (foot positions of the dancer). The process
of choreographing a dance by sequencing steps together is then, at a first approximation,
equivalent to creating an input string that this automaton will accept, which dictates
a specific path to take through the states. If the input string is valid, it will move the
automaton from state to state, that is, foot position to foot position, ending on one of
the final positions. If the input string is invalid, by having two consecutive steps where
the end position of the first step is not the same as the start position of the next step,
then the automaton will move into the ‘impossible’ state, which is not a final state,
and the transition function will ensure that the automaton remains in that state to the
end of the string. In this case, the string will not be accepted. The set of strings, or
language, accepted by the ballet automaton therefore defines the set of all possible valid

3For more information see the excellent textbook Introduction to Automata Theory, Languages, and
Computation by John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman.

4Figure adapted from “ballet: five basic positions. Art. Britannica Online for Kids. Web. 12 Dec.
2015. http://kids.britannica.com/comptons/art-167043.”

5For other ideas along similar lines, see Schaffer, K. Mathematics and the Ballet Barre. Bridges 2011:
Mathematics, Music, Art, Architecture, Culture, 529:523, and LaViers, A. & Egerstedt, M. The Ballet
Automaton: A Formal Model for Human Motion. Proceedings of the 2011 American Control Conference,
3837:3842.
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ballet dances.

Of course, the above automaton is a simplification. It would be too complicated to
describe an automaton that models the entirety of classical ballet, at least in the present
article. But, we can define and consider a small example in the final section, below.

‘En avant et en arrière’: linear transformations and inverse
functions

Another founding principle of ballet is the linear transformation of three-dimensional
Euclidean vector space R3. First, most ballet steps can be translated in space, that
is, they can be performed going forwards (en avant), backwards (en arrière), to the
left, and to the right. For example, the step known as a chassé, a sliding step, can be
performed in each of these four ways. Secondly, many steps involve rotation, either of
the body or of the step itself. A wonderful example is the pirouette, where the dancer
spins on one leg. Thirdly, many steps undergo scaling. For example, the basic jeté
(thrown leap) comes in three sizes: a petit jeté, a small hop; a standard jeté, which is a
medium-sized jump; and a grand jeté, a huge leap (Fig. 3a). To a mathematical mind,
this organisation of ballet steps according to principles of linear transformation is very
pleasing.

Many ballet steps are asymetric, or chiral. Every such step can be reflected along the
main vertical axis of the body, that is, they can be performed both on the left side and on
the right side. A wonderful example is the attitude, a held pose that can be performed on
either the left leg or the right leg (Fig. 2). Ballet also makes much use of repetition: an
out-and-out application of the identity function. Most interestingly, many ballet steps
have an inverse - the step can literally be danced backwards from its finishing position to
its starting position - an almost perfect example of an inverse function. This means that
a dance made up only of these invertible steps can technically be performed backwards
- equivalent to reversing the equivalent input string and thereby tracing backwards the
path through our ballet automaton defined in the previous section! In fact, in ballet
classes it is not uncommon for the teacher to set a short exercise, and after the students
have performed it, to ask the students to perform it backwards, giving them little time
to think. This speaks to the somewhat unrecognised mathematical ability of dancers.
See the final section, below for a detailed example of such an inversion.

In the first section, we considered a theoretical ballet automaton that defines all
possible ballet dances, that is, those strings of ballet steps that are physically possible to
perform. However, not all of these possible ballet dances will necessarily be beautiful or
even interesting to watch. Those input strings, or dances, that incorporate the elements
discussed above, such as translations, reflections, repetitions, or inversions, tend to be
used the most in classical ballet. For example, in the Black Swan solo in Swan Lake, the
choreography makes much use of reflection (performing the same sequence to the left
and to the right) and repetition (most famously in the 32 fouetté turns at the very end
of the solo).
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Figure 2: An attitude pose in ballet, performed here by Yamamoto Mashiko in the
ballet Le Corsaire. Attitude can be performed either on the left or right foot, perfectly
reflected.6

The beauty of lines, angles and symmetry

Many mathematical objects, such as groups, geometric structures or topological spaces,
are considered beautiful when we ‘see’ them in our mind’s eye or in an illustration. For
example, there is a fundamental, pleasing beauty to a perfect sphere or a tetradedron.
Just as in mathematics, fundamental to the core beauty of ballet is the composition of
shapes, angles and structures in visual space.

Figure 3: Caption: Illustrations of curves, symmetry, angles and extension in the ballets
(a) Don Quixote, (b) Swan Lake, and (c) Apollo.7

Figure 3 illustrates some of these geometrically aesthetic ideas. In the grand jeté
(Fig. 3a), the soft ellipse created by the arms stands in sharp contrast to the 180◦ angle
created by the legs. The principle of symmetry, made possible by the fact that every

6Note: Image adapted from cc Fanny Schertzer http://creativecommons.org/licenses/by-sa/2.5/
7Note: Images adapted from (a) cc Peter Gerstbach, (b) cc Fanny Schertzer http://

creativecommons.org/licenses/by-sa/2.5/, (c) Andrea Mohin/The New York Times.
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ballet step can be reflected (as discussed in the previous section), is utilised to full effect
by the corps de ballet in the First Act of Swan Lake (Fig. 3b). A obsession with repeated
angles, in addition to symmetry, is seen in this iconic moment from the ballet Apollo,
in which three female dancers create the illusion of multiple legs radiating out from a
central origin (Fig. 3c). The radiating lines, generated by the concept of extension of
the limbs in ballet, seem as though they could go on forever, evoking the impression
of infinity. These are just a few examples of the general principle that classical ballet
choreography often searches for moments of profound geometric perfection.

Conclusion

This paper argued that ballet is based upon mathematical foundations, both at a con-
structional and aesthetic level. Choreographing and dancing ballet requires fast mathe-
matical problem-solving, consciously or unconsciously. Moreover, recognising the com-
putational and geometrical under-pinnings of ballet increases one’s appreciation of any
ballet performance. For these reasons, it would be natural for ballet to become the art
of choice for mathematicians!

A Deterministic finite automaton for “petit allégro”

We present a deterministic finite automaton (DFA) A to exemplify petit allégro exercises,
as may be found in ballet class. Petit allégro refers to the part of a ballet lesson or dance
that involves small jumps. For simplicity, we limit our exercise to the steps changement
and entrechat, and various sautés (jumps) between the foot positions (Table 1).

The DFA A is the five-tuple A = (Q,Σ, δ, q0, F ), where Q is the set of states, Σ is
the set of input symbols, δ is the transition function, q0 is the start state, and F is the
set of final accepting states.

For our simplified automaton A, the set of states Q is limited to first position (1st),
second position (2nd), fifth position-right-foot-in-front (5thR), fifth position-left-foot-in-
front (5thL) (Fig. 1), and the physically impossible state I. That is, Q = {1st, 2nd,
5thR, 5thL, I}. We designate 5thR as the start state q0 as the majority of ballet class
exercises start in this position. The set of input symbols Σ consists of 6 petit allégro
steps, specified in Table 1. Transition function δ, which controls how each step moves
the dancer from one state (foot position) to another, is specified in Table 2. Note that
if the choreography asks for an impossible sequence of steps, that is, the end position
of one step is not the start position for the following step, the automaton moves to
non-accepting state I and remains there for the rest of the input.

We define valid input strings, or valid choreographies for a dance exercise based upon
these petit allégro steps, as those strings that would be accepted by A. An interesting
valid exercise to consider is string1 = ch-ch-S2-S1-S2-S2-S5L-ec. This string, which
starts at the start state 5thR and ends in the state 5thL, will be accepted by the au-
tomaton. Since the step S5L is chiral, we can also define the reflection of this exercise as
string 2 = ch-ch-S2-S1-S2-S2-S5R-ec. By concatenating string1 and string2 to form new
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string3 = ch-ch-S2-S1-S2-S2-S5L-ec-ch-ch-S2-S1-S2-S2-S5R-ec, we can create a new ex-
ercise in which string1 leads straight into string2. We can do this because step ch is
valid from the state 5thL, that is, it does not at any point send the automaton into the
non-accepting state I. Since the exercise defined by string3 starts and ends on the same
position (5thR), the exercise can be repeated consecutively as many times as you like -
the only limit being the dancers collapsing from exhaustion!

Moreover, since the exercise encoded by string3 consists of steps that each have an
inverse (see Table 1), the entire exercise can be danced backwards by stringing together
the inverses of the steps in string 3, in inverse order, to form string4 = ec-S2-S2-S1-
S2-S5L-ch-ch-ec-S2-S2-S1-S2-S5R-ch-ch. Necessarily, the inverse of a valid string, if it
exists, will be valid. Both the original exercise (string3) and the inverse exercise (string4)
can be traced in the diagram of automaton A in Figure 5.

Automaton A does not accept every possible string constructed from the set Σ. For
example, a string that includes the following consecutive steps ...-S2-ec-... will certainly
not be valid: From any state, transition function δ sends automaton A to state “2nd”
when S2 is read in. But then when symbol ec is read in when A is in state “2nd”, δ
defines that A moves to state I. Since all input symbols read in state I keep automaton
A in state I, which is not an accepting state, the string will not be accepted as valid. In
the dance, this represents the situation in which the choreography requires the dancer
to perform an entrechat after a sauté to second position - which is physically impossible
since the entrechat can only be danced by the feet starting in a fifth position.
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symbol step description inverse step

ch changement Jump up from, and
land, in fifth position,
having swopped which
foot is in front.

changement

ec entrechat Jump in fifth position,
crossing the legs twice
in the air and landing
in same foot position
(Fig. 4).

entrechat

A sauté back
to the foot
position from
which the
original sauté
started.

S1 sauté to first
Jump from any foot
position to land in the
specified foot position.

S2 sauté to second
S5R sauté to fifth (right foot front)
S5L sauté to fifth (left foot front)

Table 1: Set Σ of input symbols for automaton A, corresponding to certain steps of petit
allégro, with explanations. Note that the changement is in fact a special case of the
sauté to the opposite fifth position.

ch ec S1 S2 S5R S5L

1st I I 1st 2nd 5thR 5thL

2nd I I 1st 2nd 5thR 5thL

5thR 5thL 5thR 1st 2nd 5thR 5thL

5thL 5thR 5thL 1st 2nd 5thR 5thL

I I I I I I I

Table 2: Table of transition function δ.
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Figure 4: The entrechat steps begins and ends in the same fifth position (in this case,
fifth position with right foot in front). While in the air, the legs are crossed with the
right foot behind, and then crossed again to return the right foot to the front.8

Figure 5: Diagram of automaton A, showing the five states (foot positions) and the
ways the different symbols (steps) in Table 1 move the dancer between these states. For
clarity, only the transitions used in string3 are depicted (see main text).

8Image adapted from Ortia at Wikimedia Commons.
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